Opendata, web and dolomites

Microflusa SIGNED

Fabricating colloidal materials with microfluidics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Microflusa project word cloud

Explore the words cloud of the Microflusa project. It provides you a very rough idea of what is the project "Microflusa" about.

variety    pave    band    mechanism    numerical    espci    molecular    anisotropic    kth    simulations    fundamentally    structures    chemical    made    droplets    elaborating    harness    small    reorganizes    clusters    market    unlock    innovative    rates    hydrodynamic    configurations    numerically    million    though    consequence    mimicking    assemble    building    self    condensed    throughput    crystallization    physics    chemistry    teams    microfluidic    imagined    tetrahedrons    outstanding    emphasizing    industrial    triangles    sme    theory    discovery    material    tightly    stable    feasible    monodisperse    complementary    too    theoretical    colloidal    demonstrated    benefit    microchannels    science    technion    transforming    synthesis    microfluidics    photonic    wps    linked    avenues    progress    transport    functional    deepen    blocks    expertise    gap    hope    solid    revolutionary    exceedingly    starting    materials    surfactants    throughputs    sciences    point    bottleneck   

Project "Microflusa" data sheet

The following table provides information about the project.

Coordinator
ECOLE SUPERIEURE DE PHYSIQUE ET DECHIMIE INDUSTRIELLES DE LA VILLE DEPARIS 

Organization address
address: RUE VAUQUELIN 10
city: PARIS
postcode: 75231
website: www.espci-paristech.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website http://www.microflusa-project.eu
 Total cost 3˙027˙637 €
 EC max contribution 3˙027˙637 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-2014-2015-RIA
 Funding Scheme RIA
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE SUPERIEURE DE PHYSIQUE ET DECHIMIE INDUSTRIELLES DE LA VILLE DEPARIS FR (PARIS) coordinator 1˙352˙649.00
2    KUNGLIGA TEKNISKA HOEGSKOLAN SE (STOCKHOLM) participant 708˙887.00
3    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) participant 700˙000.00
4    RTD TALOS LIMITED CY (LEFKOSIA) participant 150˙000.00
5    FONDATION PIERRE-GILLES DE GENNES POUR LA RECHERCHE FR (Paris) participant 116˙100.00

Map

 Project objective

In the field of colloidal science, much progress has been done on the synthesis of complex building blocks mimicking molecular structures with the hope of elaborating innovative materials. However, in the present state of the art, the rates at which these building blocks are obtained are exceedingly small. As a consequence, even though theoretically, revolutionary materials can be imagined, throughputs are far too low to approach industrial applications. We propose to unlock this bottleneck with microfluidic technology. The starting point is the discovery (by ESPCI) of a new hydrodynamic mechanism that reorganizes droplets clusters into well-defined configurations during their transport in microchannels. In this work, the monodisperse production, at high rates, of a variety of anisotropic clusters (triangles, tetrahedrons etc.), has been demonstrated. Our objective is to deepen and harness this mechanism by transforming, under high throughput conditions, such clusters into solid and stable building blocks that self-assemble into functional materials. Rates of production of one million of building blocks per second are feasible. This would open new avenues in the field of material sciences and pave the way towards an industrial production of revolutionary colloidal materials. The project clearly focuses on this goal, by bringing together outstanding teams with complementary expertise: Microfluidics & Chemistry (ESPCI), Hydrodynamic theory & Condensed Matter Physics (Technion), Numerical Simulations (KTH). The WPs include the chemical synthesis of surfactants, high throughput production of building blocks, their crystallization into functional materials, emphasizing on photonic band gap materials, characterized numerically by Technion. Fundamentally important, work will be tightly linked to theoretical analysis and numerical simulations and will benefit from market studies made by a SME.

 Deliverables

List of deliverables.
Synthesis of surfactants of type A, B and C and then study of the solidification of the TiO2-dyes systems Documents, reports 2019-07-26 10:19:44
Interim report on dissemination activities Documents, reports 2019-07-26 10:19:44
Virtual self-assembly: Simulations of self-assembly of basic building blocks (4-10 droplets), with focus on the role of the near field chemical interactions Documents, reports 2019-07-26 10:19:44
Description of the plug formation Documents, reports 2019-07-26 10:19:44
Communication strategy including dissemination action plan Documents, reports 2019-07-26 10:19:43
Project website Websites, patent fillings, videos etc. 2019-07-26 10:19:43
Quality Assurance Plan Documents, reports 2019-07-26 10:19:43

Take a look to the deliverables list in detail:  detailed list of Microflusa deliverables.

 Publications

year authors and title journal last update
List of publications.
2018 Itzhak Fouxon, Alexander Leshansky
Fundamental solution of unsteady Stokes equations and force on an oscillating sphere near a wall
published pages: , ISSN: 2470-0045, DOI: 10.1103/physreve.98.063108
Physical Review E 98/6 2020-03-05
2019 Marco E. Rosti, Francesco De Vita, Luca Brandt
Numerical simulations of emulsions in shear flows
published pages: 667-682, ISSN: 0001-5970, DOI: 10.1007/s00707-018-2265-5
Acta Mechanica 230/2 2020-02-28
2018 Daulet Izbassarov, Marco E. Rosti, M. Niazi Ardekani, Mohammad Sarabian, Sarah Hormozi, Luca Brandt, Outi Tammisola
Computational modeling of multiphase viscoelastic and elastoviscoplastic flows
published pages: 521-543, ISSN: 0271-2091, DOI: 10.1002/fld.4678
International Journal for Numerical Methods in Fluids 88/12 2020-02-28
2018 F. De Vita, M.E. Rosti, D. Izbassarov, L. Duffo, O. Tammisola, S. Hormozi, L. Brandt
Elastoviscoplastic flows in porous media
published pages: 10-21, ISSN: 0377-0257, DOI: 10.1016/j.jnnfm.2018.04.006
Journal of Non-Newtonian Fluid Mechanics 258 2020-02-28
2018 Zhouyang Ge, Hanna Holmgren, Martin Kronbichler, Luca Brandt, Gunilla Kreiss
Effective slip over partially filled microcavities and its possible failure
published pages: , ISSN: 2469-990X, DOI: 10.1103/physrevfluids.3.054201
Physical Review Fluids 3/5 2020-02-28
2019 Francesco De Vita, Marco Edoardo Rosti, Sergio Caserta, Luca Brandt
On the effect of coalescence on the rheology of emulsions
published pages: 969-991, ISSN: 0022-1120, DOI: 10.1017/jfm.2019.722
Journal of Fluid Mechanics 880 2020-02-28
2020 Ilham Maimouni, Cesare M. Cejas, Janine Cossy, Patrick Tabeling, Maria Russo
Microfluidics Mediated Production of Foams for Biomedical Applications
published pages: 83, ISSN: 2072-666X, DOI: 10.3390/mi11010083
Micromachines 11/1 2020-01-30
2019 Joshua Ricouvier, Patrick Tabeling, Pavel Yazhgur
Foam as a self-assembling amorphous photonic band gap material
published pages: 201820526, ISSN: 0027-8424, DOI: 10.1073/pnas.1820526116
Proceedings of the National Academy of Sciences 2019-07-26
2019 I. Chakraborty, J. Ricouvier, P. Yazhgur, P. Tabeling, A. M. Leshansky
Droplet generation at Hele-Shaw microfluidic T-junction
published pages: 22010, ISSN: 1070-6631, DOI: 10.1063/1.5086808
Physics of Fluids 31/2 2019-07-26
2019 Konstantin I. Morozov, Alexander M. Leshansky
Photonics of Template-Mediated Lattices of Colloidal Clusters
published pages: , ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.8b03714
Langmuir 2019-07-26
2017 Joshua Ricouvier, Romain Pierrat, Rémi Carminati, Patrick Tabeling, Pavel Yazhgur
Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.119.208001
Physical Review Letters 119/20 2019-07-26
2018 Zhouyang Ge, Jean-Christophe Loiseau, Outi Tammisola, Luca Brandt
An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces
published pages: 435-459, ISSN: 0021-9991, DOI: 10.1016/j.jcp.2017.10.046
Journal of Computational Physics 353 2019-07-26
2018 Simon Specklin, Johan Fenneteau, Parthasarathi Subramanian, Janine Cossy
Stereoselective Ring-Opening of gem -Difluorocyclopropanes: An Entry to Stereo-defined ( E , E )- and ( E , Z )-Conjugated Fluorodienes
published pages: 332-336, ISSN: 0947-6539, DOI: 10.1002/chem.201704956
Chemistry - A European Journal 24/2 2019-07-26
2017 Itzhak Fouxon, Zhouyang Ge, Luca Brandt, Alexander Leshansky
Integral representation of channel flow with interacting particles
published pages: , ISSN: 2470-0045, DOI: 10.1103/PhysRevE.96.063110
Physical Review E 96/6 2019-07-26
2017 I. Chakraborty, J. Ricouvier, P. Yazhgur, P. Tabeling, A. M. Leshansky
Microfluidic step-emulsification in axisymmetric geometry
published pages: 3609-3620, ISSN: 1473-0197, DOI: 10.1039/c7lc00755h
Lab Chip 17/21 2019-07-26
2016 Bingqing Shen, Joshua Ricouvier, Florent Malloggi, Patrick Tabeling
Designing Colloidal Molecules with Microfluidics
published pages: 1600012, ISSN: 2198-3844, DOI: 10.1002/advs.201600012
Advanced Science 3/6 2019-07-26

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROFLUSA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROFLUSA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

ATEMPGRAD (2019)

Analysing Temperature Effects with a Mobile and Precise Gradient Device

Read More  

WiPLASH (2019)

Architecting More Than Moore – Wireless Plasticity for Heterogeneous Massive Computer Architectures

Read More  

ALICE (2019)

Active Living Infrastructure: Controlled Environment

Read More