Opendata, web and dolomites

ArtifiCell SIGNED

Synthetic Cell Biology: Designing organelle transport mechanisms

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ArtifiCell project word cloud

Explore the words cloud of the ArtifiCell project. It provides you a very rough idea of what is the project "ArtifiCell" about.

introduce    programmed    templates    chosen    bilayers    backbones    physics    equivalents    naturally    externally    lack    plasma    speculatively    natural    2013    nobel    synthetically    capture    pna    organisms    exist    mechanisms    break    wild    cages    contend    producing    someday    pi    synthetic    de    prize    origami    avenues    negatively    charged    learned    functions    dna    engineering    biology    barrier    nucleic    phosphate    start    supplied    phospholipid    almost    regulation    artificially    vesicle    versions    machinery    pnas    membrane    apparatus    medicine    physiology    area    fuse    acids    rnas    award    introducing    idea    impacts    cell    imagine    templated    re    fundamental    complementary    functional    genetic    encoded    vesicles    fusion    form    direct    peptide    central    oligonucleotides    core    mainly    snares    delivered    ultimately    first    tethers    living    exocytosis    readily    transport    secretory    protein    hope    coats    cells    linked    vision    trigger    innovative    eyed    novo    notion    approached   

Project "ArtifiCell" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 3˙000˙000 €
 EC max contribution 3˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 2˙200˙000.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 800˙000.00

Map

 Project objective

Imagine being able to design into living cells and organisms de novo vesicle transport mechanisms that do not naturally exist? At one level this is a wild-eyed notion of synthetic biology. But we contend that this vision can be approached even today, focusing first on the process of exocytosis, a fundamental process that impacts almost every area of physiology. Enough has now been learned about the natural core machinery (as recognized by the award of the 2013 Nobel Prize in Physiology or Medicine to the PI and others) to take highly innovative physics/engineering- and DNA-based approaches to design synthetic versions of the secretory apparatus that could someday open new avenues in genetic medicine. The central idea is to introduce DNA-based functional equivalents of the core protein machinery that naturally form (coats), target (tethers), and fuse (SNAREs) vesicles. We have already taken first steps by using DNA origami-based templates to produce synthetic phospholipid vesicles and complementary DNA-based tethers to specifically capture these DNA-templated vesicles on targeted bilayers. Others have linked DNA oligonucleotides to trigger vesicle fusion. The next and much more challenging step is to introduce such processes into living cells. We hope to break this barrier, and in the process start a new field of research into “synthetic exocytosis”, by introducing Peptide-Nucleic Acids (PNAs) of tethers and SNAREs to re-direct naturally-produced secretory vesicles to artificially-programmed targets and provide artificially-programmed regulation. PNAs are chosen mainly because they lack the negatively charged phosphate backbones of DNA, and therefore are more readily delivered into the cell across the plasma membrane. Future steps, would include producing the transport vesicles synthetically within the cell by externally supplied origami-based PNA or similar cages, and - much more speculatively - ultimately using encoded DNA and RNAs to provide these functions.

 Publications

year authors and title journal last update
List of publications.
2019 Fabio Manca, Frederic Pincet, Lev Truskinovsky, James E. Rothman, Lionel Foret, Matthieu Caruel
SNARE machinery is optimized for ultrafast fusion
published pages: 2435-2442, ISSN: 0027-8424, DOI: 10.1073/pnas.1820394116
Proceedings of the National Academy of Sciences 116/7 2020-03-11
2019 Paul Heo, Sathish Ramakrishnan, Jeff Coleman, James E. Rothman, Jean‐Baptiste Fleury, Frederic Pincet
Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D‐Printed Microfluidic Setup
published pages: 1900725, ISSN: 1613-6810, DOI: 10.1002/smll.201900725
Small 15/21 2020-03-11
2017 Zhao Zhang, Yang Yang, Frederic Pincet, Marc C. Llaguno, Chenxiang Lin
Placing and shaping liposomes with reconfigurable DNA nanocages
published pages: 653-659, ISSN: 1755-4330, DOI: 10.1038/NCHEM.2802
Nature Chemistry 9/7 2019-07-04
2018 Oscar D. Bello, Ouardane Jouannot, Arunima Chaudhuri, Ekaterina Stroeva, Jeff Coleman, Kirill E. Volynski, James E. Rothman, Shyam S. Krishnakumar
Synaptotagmin oligomerization is essential for calcium control of regulated exocytosis
published pages: E7624-E7631, ISSN: 0027-8424, DOI: 10.1073/pnas.1808792115
Proceedings of the National Academy of Sciences 115/32 2019-07-04
2018 Jeff Coleman, Ouardane Jouannot, Sathish K. Ramakrishnan, Maria N. Zanetti, Jing Wang, Vincenzo Salpietro, Henry Houlden, James E. Rothman, Shyam S. Krishnakumar
PRRT2 Regulates Synaptic Fusion by Directly Modulating SNARE Complex Assembly
published pages: 820-831, ISSN: 2211-1247, DOI: 10.1016/j.celrep.2017.12.056
Cell Reports 22/3 2019-07-04
2018 Sathish Ramakrishnan, Andrea Gohlke, Feng Li, Jeff Coleman, Weiming Xu, James E. Rothman, Frederic Pincet
High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis
published pages: 5849-5859, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.8b00116
Langmuir 34/20 2019-07-04
2018 Michael W. Grome, Zhao Zhang, Frédéric Pincet, Chenxiang Lin
Vesicle Tubulation with Self-Assembling DNA Nanosprings
published pages: 5330-5334, ISSN: 1433-7851, DOI: 10.1002/anie.201800141
Angewandte Chemie International Edition 57/19 2019-07-04

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ARTIFICELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ARTIFICELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

DEEPTIME (2020)

Probing the history of matter in deep time

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More