Opendata, web and dolomites

ArtifiCell SIGNED

Synthetic Cell Biology: Designing organelle transport mechanisms

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ArtifiCell project word cloud

Explore the words cloud of the ArtifiCell project. It provides you a very rough idea of what is the project "ArtifiCell" about.

backbones    imagine    cages    supplied    versions    physiology    programmed    encoded    introduce    core    first    learned    negatively    machinery    externally    vesicle    re    functions    natural    de    functional    break    biology    avenues    synthetic    central    secretory    plasma    tethers    phosphate    bilayers    impacts    mainly    coats    exist    dna    ultimately    delivered    phospholipid    area    mechanisms    approached    peptide    fundamental    almost    wild    idea    charged    hope    artificially    linked    someday    snares    readily    eyed    cell    2013    synthetically    award    contend    form    acids    pi    nucleic    organisms    start    lack    producing    equivalents    engineering    capture    templates    innovative    templated    nobel    membrane    medicine    naturally    speculatively    protein    pnas    origami    introducing    living    oligonucleotides    novo    notion    trigger    prize    physics    complementary    rnas    apparatus    vesicles    fusion    pna    regulation    genetic    direct    chosen    vision    fuse    barrier    cells    transport    exocytosis   

Project "ArtifiCell" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 3˙000˙000 €
 EC max contribution 3˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 2˙200˙000.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 800˙000.00

Map

 Project objective

Imagine being able to design into living cells and organisms de novo vesicle transport mechanisms that do not naturally exist? At one level this is a wild-eyed notion of synthetic biology. But we contend that this vision can be approached even today, focusing first on the process of exocytosis, a fundamental process that impacts almost every area of physiology. Enough has now been learned about the natural core machinery (as recognized by the award of the 2013 Nobel Prize in Physiology or Medicine to the PI and others) to take highly innovative physics/engineering- and DNA-based approaches to design synthetic versions of the secretory apparatus that could someday open new avenues in genetic medicine. The central idea is to introduce DNA-based functional equivalents of the core protein machinery that naturally form (coats), target (tethers), and fuse (SNAREs) vesicles. We have already taken first steps by using DNA origami-based templates to produce synthetic phospholipid vesicles and complementary DNA-based tethers to specifically capture these DNA-templated vesicles on targeted bilayers. Others have linked DNA oligonucleotides to trigger vesicle fusion. The next and much more challenging step is to introduce such processes into living cells. We hope to break this barrier, and in the process start a new field of research into “synthetic exocytosis”, by introducing Peptide-Nucleic Acids (PNAs) of tethers and SNAREs to re-direct naturally-produced secretory vesicles to artificially-programmed targets and provide artificially-programmed regulation. PNAs are chosen mainly because they lack the negatively charged phosphate backbones of DNA, and therefore are more readily delivered into the cell across the plasma membrane. Future steps, would include producing the transport vesicles synthetically within the cell by externally supplied origami-based PNA or similar cages, and - much more speculatively - ultimately using encoded DNA and RNAs to provide these functions.

 Publications

year authors and title journal last update
List of publications.
2019 Fabio Manca, Frederic Pincet, Lev Truskinovsky, James E. Rothman, Lionel Foret, Matthieu Caruel
SNARE machinery is optimized for ultrafast fusion
published pages: 2435-2442, ISSN: 0027-8424, DOI: 10.1073/pnas.1820394116
Proceedings of the National Academy of Sciences 116/7 2020-03-11
2019 Paul Heo, Sathish Ramakrishnan, Jeff Coleman, James E. Rothman, Jean‐Baptiste Fleury, Frederic Pincet
Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D‐Printed Microfluidic Setup
published pages: 1900725, ISSN: 1613-6810, DOI: 10.1002/smll.201900725
Small 15/21 2020-03-11
2017 Zhao Zhang, Yang Yang, Frederic Pincet, Marc C. Llaguno, Chenxiang Lin
Placing and shaping liposomes with reconfigurable DNA nanocages
published pages: 653-659, ISSN: 1755-4330, DOI: 10.1038/NCHEM.2802
Nature Chemistry 9/7 2019-07-04
2018 Oscar D. Bello, Ouardane Jouannot, Arunima Chaudhuri, Ekaterina Stroeva, Jeff Coleman, Kirill E. Volynski, James E. Rothman, Shyam S. Krishnakumar
Synaptotagmin oligomerization is essential for calcium control of regulated exocytosis
published pages: E7624-E7631, ISSN: 0027-8424, DOI: 10.1073/pnas.1808792115
Proceedings of the National Academy of Sciences 115/32 2019-07-04
2018 Jeff Coleman, Ouardane Jouannot, Sathish K. Ramakrishnan, Maria N. Zanetti, Jing Wang, Vincenzo Salpietro, Henry Houlden, James E. Rothman, Shyam S. Krishnakumar
PRRT2 Regulates Synaptic Fusion by Directly Modulating SNARE Complex Assembly
published pages: 820-831, ISSN: 2211-1247, DOI: 10.1016/j.celrep.2017.12.056
Cell Reports 22/3 2019-07-04
2018 Sathish Ramakrishnan, Andrea Gohlke, Feng Li, Jeff Coleman, Weiming Xu, James E. Rothman, Frederic Pincet
High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis
published pages: 5849-5859, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.8b00116
Langmuir 34/20 2019-07-04
2018 Michael W. Grome, Zhao Zhang, Frédéric Pincet, Chenxiang Lin
Vesicle Tubulation with Self-Assembling DNA Nanosprings
published pages: 5330-5334, ISSN: 1433-7851, DOI: 10.1002/anie.201800141
Angewandte Chemie International Edition 57/19 2019-07-04

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ARTIFICELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ARTIFICELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NEUTRAMENTH (2018)

A redox-neutral process for the cost-efficient and environmentally friendly production of Menthol

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More