Explore the words cloud of the hybridFRET project. It provides you a very rough idea of what is the project "hybridFRET" about.
The following table provides information about the project.
Coordinator |
HEINRICH-HEINE-UNIVERSITAET DUESSELDORF
Organization address contact info |
Coordinator Country | Germany [DE] |
Project website | http://www.mpc.hhu.de/unsere-forschung/gefoerderte-forschungsprojekte-ag-seidel/erc-advanced-grant-hybridfret-deciphering-biomolecular-structure-and-dynamics.html |
Total cost | 2˙499˙457 € |
EC max contribution | 2˙499˙457 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2014-ADG |
Funding Scheme | ERC-ADG |
Starting year | 2015 |
Duration (year-month-day) | from 2015-12-01 to 2020-11-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | HEINRICH-HEINE-UNIVERSITAET DUESSELDORF | DE (DUSSELDORF) | coordinator | 2˙499˙457.00 |
To understand and modulate biological processes, we need their spatiotemporal molecular models. In this project we propose to build these models by a holistic approach. The recent methodological and technical advances in fluorescence spectroscopy and microscopy as well as in multi-scale modelling of complex biochemical systems set the stage to tackle cross-fertilizing challenges in biophysics, biochemistry and cell biology. The applicant proposes to develop a novel integrative platform for a Molecular Fluorescence Microscope (MFM) to achieve ultimate resolution in space (sub-nanometer) and time (picoseconds) for characterizing structure and dynamics of proteins. MFM will combine Multi-parameter Fluorescence Detection with Computational Microscopy (molecular dynamics and coarse grained simulations) in a hybrid approach, first, to derive a complete molecular description of all fluorescence properties of the tailored dyes in proteins (objectives 1 and 2) and, second, to utilize this information in simulations to report on the protein properties (objective 3). In this hybrid approach high precision FRET measurements are the core experimental technique (hybridFRET). The MFM will allow us to tackle the central biophysical question of how intra- and intermolecular domain interactions modulate proteins' overall structure, dynamics, and thus ultimately function (objective 4). In this proposal we will apply MFM to two prototypic proteins of significant medical relevance. The combination with Multi-parameter Fluorescence Image Spectroscopy will exploit the ultimate resolution of the MFM for molecular protein imaging in live cells. To follow and ultimately understand biological processes, we need their spatiotemporal models of the integrative fluorescence spectroscopy platform. Until now, no holistic use of fluorescence spectroscopy for structural modelling of proteins has been reported.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Thomas-Otavio Peulen, Oleg Opanasyuk, Claus A.M. Seidel Combining Graphical and Analytical Methods with Molecular Simulations to Analyze Time-resolved FRET-measurements of Labeled Macromolecules Accurately published pages: 8211-8241, ISSN: 1520-6106, DOI: 10.1021/acs.jpcb.7b03441 |
The Journal of Physical Chemistry B 121 | 2019-07-08 |
2018 |
Sinan Kilic, Suren Felekyan, Olga Doroshenko, Iuliia Boichenko, Mykola Dimura, Hayk Vardanyan, Louise C. Bryan, Gaurav Arya, Claus A. M. Seidel, Beat Fierz Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-017-02619-5 |
Nature Communications 9/1 | 2019-07-08 |
2016 |
Mykola Dimura, Thomas O Peulen, Christian A Hanke, Aiswaria Prakash, Holger Gohlke, Claus AM Seidel Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems published pages: 163-185, ISSN: 0959-440X, DOI: 10.1016/j.sbi.2016.11.012 |
Current Opinion in Structural Biology 40 | 2019-07-08 |
2018 |
Maksym Tsytlonok, Hugo Sanabria, Yuefeng Wang, Suren Felekyan, Katherina Hemmen, Aaron Phillips, Mi-Kyung Yun, Brett Waddell, Cheon-Gil Park, Sivaraja Vaithiyalingam, Luigi Iconaru, Stephen W. White, Peter Tompa, Claus A. M. Seidel, Richard Kriwacki Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation published pages: , ISSN: , DOI: |
2019-03-12 | |
2018 |
Hugo Sanabria, Dmitro Rodnin, Katherina Hemmen, Thomas Peulen, Suren Felekyan, Mark R. Fleissner, Mykola Dimura, Felix Koberling, Ralf Kühnemuth, Wayne Hubbell, Holger Gohlke, Claus A.M. Seidel Resolving dynamics and function of transient states in single enzyme molecules published pages: , ISSN: , DOI: |
2019-03-12 | |
2018 |
Alexander Gansen, Suren Felekyan, Ralf Kühnemuth, Kathrin Lehmann, Katalin Tóth, Claus A. M. Seidel, Jörg Langowski High precision FRET studies reveal reversible transitions in nucleosomes between microseconds and minutes published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-06758-1 |
Nature Communications 9/1 | 2019-03-06 |
2018 |
Björn Hellenkamp, Sonja Schmid, Olga Doroshenko, Oleg Opanasyuk, Ralf Kühnemuth, Soheila Rezaei Adariani, Benjamin Ambrose, Mikayel Aznauryan, Anders Barth, Victoria Birkedal, Mark E. Bowen, Hongtao Chen, Thorben Cordes, Tobias Eilert, Carel Fijen, Christian Gebhardt, Markus Götz, Giorgos Gouridis, Enrico Gratton, Taekjip Ha, Pengyu Hao, Christian A. Hanke, Andreas Hartmann, Jelle Hendrix, Lasse L. Hildebrandt, Verena Hirschfeld, Johannes Hohlbein, Boyang Hua, Christian G. Hübner, Eleni Kallis, Achillefs N. Kapanidis, Jae-Yeol Kim, Georg Krainer, Don C. Lamb, Nam Ki Lee, Edward A. Lemke, Brié Levesque, Marcia Levitus, James J. McCann, Nikolaus Naredi-Rainer, Daniel Nettels, Thuy Ngo, Ruoyi Qiu, Nicole C. Robb, Carlheinz Röcker, Hugo Sanabria, Michael Schlierf, Tim Schröder, Benjamin Schuler, Henning Seidel, Lisa Streit, Johann Thurn, Philip Tinnefeld, Swati Tyagi, Niels Vandenberk, Andrés Manuel Vera, Keith R. Weninger, Bettina Wünsch, Inna S. Yanez-Orozco, Jens Michaelis, Claus A. M. Seidel, Timothy D. Craggs, Thorsten Hugel Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study published pages: 669-676, ISSN: 1548-7091, DOI: 10.1038/s41592-018-0085-0 |
Nature Methods 15/9 | 2019-03-06 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYBRIDFRET" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "HYBRIDFRET" are provided by the European Opendata Portal: CORDIS opendata.
Search for mechanisms to control chiral Majorana modes in superconductors
Read MoreUnderstanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts
Read MoreEvolving communication systems in response to altered sensory environments
Read More