Opendata, web and dolomites

Teraboard SIGNED

High density scalable optically interconnected Tb/s Board

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Teraboard project word cloud

Explore the words cloud of the Teraboard project. It provides you a very rough idea of what is the project "Teraboard" about.

point    accumulation    bit    limitate    volumes    energy    processor    exchange    continuous    centers    limiting    demonstrates    ultra    chip    communications    plug    commercial    signals    manufacturing    huge    optical    photonics       insertion    bank    last    interconnection    gb    passive    datacom    limited    data    edge    consists    interconnectivity    single    inter    circuits    channel    netwotks    7tb    effect    scalable    interface    density    latency    intraboard    always    intrarack    respect    silicon    laser    fiber    teraboard    platform    transceiver    congestion    requiested    convergence    redirected    telecom    constituted    traffic    assisted    necessarily    wavelength    accumulated    arising    aggregation    connector    pervasive    capacity    10x    bandwidth    elaborated    roadmap    3d    arrays    photonic    onto    transport    content    cm2    amount    respectively    timeframe    center    wdm    route    plays    full    ribbons    decade    metro    5pj    bottleneck    exchanged    lowest    presently    layer   

Project "Teraboard" data sheet

The following table provides information about the project.

Coordinator
CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI 

Organization address
address: VIALE G. P. USBERTI 181A
city: PARMA
postcode: 43124
website: www.cnit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://www.teraboard.eu/
 Total cost 4˙249˙157 €
 EC max contribution 4˙249˙157 € (100%)
 Programme 1. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
 Code Call H2020-ICT-2015
 Funding Scheme RIA
 Starting year 2015
 Duration (year-month-day) from 2015-12-01   to  2019-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI IT (PARMA) coordinator 1˙029˙750.00
2    INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM BE (LEUVEN) participant 1˙955˙357.00
3    STMICROELECTRONICS SRL IT (AGRATE BRIANZA) participant 370˙350.00
4    UNIVERSITAT POLITECNICA DE VALENCIA ES (VALENCIA) participant 270˙000.00
5    ERICSSON TELECOMUNICAZIONI SPA IT (ROMA) participant 241˙250.00
6    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) participant 206˙250.00
7    NOKIA SOLUTIONS AND NETWORKS ITALIA SPA IT (MILANO) participant 119˙950.00
8    EUROPEAN PHOTONICS INDUSTRY CONSORTIUM FR (PARIS 16) participant 56˙250.00
9    ALCATEL-LUCENT ITALIA S.P.A. IT (MILANO) participant 0.00
10    IMINDS BE (GENT) participant 0.00

Map

 Project objective

Optical communications are becoming always more relevant because of the continuous growth of the requiested bandwidth. In the last decade we assisted a continuous growing of transport and metro netwotks, presently the bottleneck is in the processing of the huge amount of data constituted by the growing number of users, the capacity of the content that is exchanged and the convergence of Telecom and Datacom. This accumulation of data are elaborated and redirected within data centers with a continuous growing of traffic congestion. The continuous growth of traffic require therefore a roadmap of bandwidth density growth that necessarily has to be scalable on the timeframe of several years. To this point photonics plays a crucial role that is always more pervasive. However a major limiting factor is also arising from the energy cost and latency accumulated by the need of aggregation to route signals. To limitate this effect is necessary to make possible data exchange and processing without or with limited aggregation. Teraboard project consists in developing a full intra data center photonic platform for intraboard, intrarack and intra data center optical communications. The Teraboard interconnection platform will be based on ultra-high density and scalable bandwidth optical interconnectivity with low insertion loss and a target of lowest energy cost per channel of 2.5pJ/bit and a manufacturing cost of 0.1$/Gb/s in volumes. These target values are 10x reduction respect to commercial state of the art. Teraboard demonstrates: 1) passive, scalable, 3D inter processor interconnection layer, 2) novel WDM optical connector to plug the fiber ribbons directly onto the transceiver chip, 3) intraboard transceiver bank with high density bandwidth of 7Tb/s/cm2. Single wavelength laser arrays will be directly integrated on the silicon photonics transceiver circuits, 4) and edge single and four wavelength transceiver interface with bandwidth density of 50 and 7Tb/s/cm2 respectively.

 Deliverables

List of deliverables.
TERABOARD communication Kit Websites, patent fillings, videos etc. 2019-05-31 15:13:34
TERABOARD communication Kit Websites, patent fillings, videos etc. 2019-05-31 15:13:34
Press release Websites, patent fillings, videos etc. 2019-05-31 15:13:30
Data Management Plan Documents, reports 2019-05-31 15:13:36

Take a look to the deliverables list in detail:  detailed list of Teraboard deliverables.

 Publications

year authors and title journal last update
List of publications.
2018 D. Van Thourhout
New Materials for Active Devices in Silicon Photonics
published pages: , ISSN: , DOI:
The 7th Conference on Advances in Optoelectronics and Micro/nano-optics 2020-02-06
2018 R. Vázquez et al.
Internode interconnection optical platform based on fs-laser written vertical waveguides
published pages: , ISSN: , DOI:
SPIE OPTO 2018, SPIE Photonic West 2018 2020-02-06
2018 Hannes Ramon, Xin Yin, Johan Bauwelinck, Michael Vanhoecke, Jochem Verbist, Wouter Soenen, Peter De Heyn, Yoojin Ban, Marianna Pantouvaki, Joris Van Campenhout, Peter Ossieur
Low-Power 56Gb/s NRZ Microring Modulator Driver in 28nm FDSOI CMOS
published pages: 467-470, ISSN: 1041-1135, DOI: 10.1109/lpt.2018.2799004
IEEE Photonics Technology Letters 30/5 2020-02-05
2019 Joris Lambrecht, Hannes Ramon, Bart Moeneclaey, Jochem Verbist, Michael Vanhoecke, Peter Ossieur, Peter De Heyn, Joris Van Campenhout, Johan Bauwelinck, Xin Yin
A 106-Gb/s PAM-4 Silicon Optical Receiver
published pages: 505-508, ISSN: 1041-1135, DOI: 10.1109/lpt.2019.2899147
IEEE Photonics Technology Letters 31/7 2020-02-05
2018 Joan Juvert, Tommaso Cassese, Sarah Uvin, Andreas de Groote, Brad Snyder, Lieve Bogaerts, Geraldine Jamieson, Joris Van Campenhout, Günther Roelkens, Dries Van Thourhout
Integration of etched facet, electrically pumped, C-band Fabry-Pérot lasers on a silicon photonic integrated circuit by transfer printing
published pages: 21443, ISSN: 1094-4087, DOI: 10.1364/oe.26.021443
Optics Express 26/17 2020-02-05
2019 Joris Lambrecht, Hannes Ramon, Bart Moeneclaey, Jochem Verbist, Michiel Verplaetse, Michael Vanhoecke, Peter Ossieur, Peter De Heyn, Joris Van Campenhout, Johan Bauwelinck, Xin Yin
90-Gb/s NRZ Optical Receiver in Silicon Using a Fully Differential Transimpedance Amplifier
published pages: 1964-1973, ISSN: 0733-8724, DOI: 10.1109/jlt.2019.2896757
Journal of Lightwave Technology 37/9 2020-02-05
2018 Jochem Verbist, Joris Lambrecht, Michiel Verplaetse, Joris Van Kerrebrouck, Ashwyn Srinivasan, Peter De Heyn, Timothy De Keulenaer, Xin Yin, Guy Torfs, Joris Van Campenhout, Gunther Roelkens, Johan Bauwelinck
DAC-Less and DSP-Free 112 Gb/s PAM-4 Transmitter Using Two Parallel Electroabsorption Modulators
published pages: 1281-1286, ISSN: 0733-8724, DOI: 10.1109/jlt.2017.2789164
Journal of Lightwave Technology 36/5 2020-02-05
2019 Hannes Ramon, Johan Bauwelinck, Joris Lambrecht, Jochem Verbist, Michael Vanhoecke, Srinivasan Ashwyn Srinivasan, Peter De Heyn, Joris Van Campenhout, Peter Ossieur, Xin Yin
70 Gb/s Low-Power DC-Coupled NRZ Differential Electro-Absorption Modulator Driver in 55 nm SiGe BiCMOS
published pages: 1504-1514, ISSN: 0733-8724, DOI: 10.1109/jlt.2019.2900192
Journal of Lightwave Technology 37/5 2020-02-05
2017 Ana Belén González, Jose Pozo
Teraboard Project Closing in on Future of Telecommunications
published pages: 24-25, ISSN: 1863-1460, DOI: 10.1002/opph.201790006
Optik & Photonik 12/1 2019-06-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TERABOARD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TERABOARD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.)

InPulse (2019)

Indium-Phosphide Pilot Line for up-scaled, low-barrier, self-sustained, PIC ecosystem

Read More  

B-HUB FOR EUROPE (2020)

Blockchain HUB FOR EUROPEan startups acceleration and growth

Read More  

DIHNET.EU (2018)

Next Generation European DIH Network

Read More