Opendata, web and dolomites

EYEPOD

The vision-strike conversion: Neural control of the predatory strike behavior in stomatopods

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EYEPOD project word cloud

Explore the words cloud of the EYEPOD project. It provides you a very rough idea of what is the project "EYEPOD" about.

feedback    paramount    host    nervous    fastest    actuated    few    question    neuroscience    releasing    insects    form    supervisor    anticipatory    yield    body    histological    investigations    correct    appropriate    re    earth    animals    controls    survival    gap    electrophysiological    period    ball    performance    fill    initiate    decision    proprioceptive    behaviors    strike    ballistic    ecologist    movement    qualified    strikes    purpose    anticipated    paloma    am    circuits    incoming    stimuli    movements    visual    line    limited    fast    stomatopod    predictive    ecology    events    world    themes    insights    sensory    species    process    confirm    observation    leader    neural    arthropods    processed    combination    sensorimotor    questions    propelled    techniques    experts    manner    basis    boasted    dimensions    gonzalez    vision    predatory    uniquely    catching    influence    utilizes    expertise    bellido    fundamental    conversion    coded    stomatopods    space    behavioural    humans    controlling   

Project "EYEPOD" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.katefeller.com
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2018-09-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

Controlling how the body is propelled through space is paramount for survival of most animals. Many species, including humans, use feedback from their visual and proprioceptive systems to correct or confirm body movements. However, feedback is limited to events that form part of the past. For many high performance behaviors, such as catching a fast incoming ball, the appropriate movement must be 1. anticipated from a short observation period and 2. actuated without sensory feedback. Understanding how visual information is processed and re-coded in a predictive manner for the purpose of movement implementation is a fundamental question in neuroscience. Such ballistic movements have been studied in predatory species, however previous investigations on the neural basis of such behaviour focus on the early circuits. Much less is known about the sensorimotor conversion of this behaviour. Here I propose to investigate the sensorimotor control of the fastest predatory strike on earth, boasted by stomatopods. This work will yield novel insights and fill the current knowledge gap on the neural basis of anticipatory and ballistic movements. As one of the few world experts in the field of stomatopod visual ecology, I am uniquely qualified to initiate this line of research. This project utilizes both my expertise as a stomatopod visual ecologist and the expertise of my host supervisor, Paloma Gonzalez-Bellido, who is a leader in the use of behavioural, histological, and electrophysiological techniques to study sensorimotor conversion in predatory insects. Using a combination of our expertise, I will address three specific questions related to the vision-strike conversion in the stomatopod nervous system: 1.) What are the neural controls for releasing stomatopod ballistic strikes? 2.) Which dimensions of visual stimuli influence the stomatopod strike decision-making process? 3.) What are common themes among arthropods for the neural control of anticipatory movements?

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EYEPOD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EYEPOD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TRACE-AD (2019)

Tracking the Effects of Amyloid and Tau Pathology on Brain Systems and Cognition in Early Alzheimer’s Disease

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

DEXSAGE (2019)

Daily Experiences of Successful Ageing

Read More