Opendata, web and dolomites

CraNOC

Cracking the Nucleo-Olivary Code

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CraNOC project word cloud

Explore the words cloud of the CraNOC project. It provides you a very rough idea of what is the project "CraNOC" about.

function    computations    fairly    completion    tools    rest    decades    optogenetic    perturbed    critical    place    constantly    olivary    muscles    interactions    mediated    movements    smooth    nuclei    individual    sensorimotor    correct    difficulties    nucleo    viral    links    executive    operations    changing    formed    animals    falling    timing    catch    cerebellar    inferior    cortex    hindering    behavior    ocs    harder    object    timescale    adjusted    successful    activated    humans    mental    ultimate    examine    accurate    crack    ed    neurological    olive    codes    cctx    tripartite    reverberating    generating    loop    for    cn    microcircuit    timed    output    unable    olivo    ctx    beating    cognitive    constitute    interestingly    intrinsic    functions    requiring    requests    methodological    disorders    imposes    oscillatory    proper    complexity    temporal    motor    environments    orchestration    learning    happens    generate    millisecond    io    theory    brain   

Project "CraNOC" data sheet

The following table provides information about the project.

Coordinator
ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM 

Organization address
address: DR MOLEWATERPLEIN 40
city: ROTTERDAM
postcode: 3015 GD
website: www.erasmusmc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website http://neuro.nl/research.php
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM NL (ROTTERDAM) coordinator 165˙598.00

Map

 Project objective

For animals and humans to be successful in their environments, their motor and cognitive behavior must be adjusted to the constantly changing reality at a millisecond-timescale. For example, it is fairly simple for a brain to determine which muscles need to be activated to catch a falling object, but much harder to determine when and for how long. Without correct timing of the executive brain functions, as happens in some neurological disorders, the individual is unable to produce smooth and accurate movements and will also have difficulties with a range of cognitive functions requiring orchestration of distinct mental operations. The tripartite olivo-cerebellar system (OCS), which is formed by the inferior olive (IO), cerebellar cortex (CCTX) and cerebellar nuclei (CN), is considered critical for generating proper timing for many motor and cognitive operations. Interestingly, all three areas, IO, CTX and CN, have intrinsic oscillatory properties and together they constitute a reverberating microcircuit, beating with well-timed responses to requests from the sensorimotor system. The ultimate timing of the output of this system, by which it imposes its effects upon the rest of the brain, is mediated by the CN. Indeed, decades of research on the OCS has resulted in detailed concepts as to how it may generate and control computations with high temporal complexity. However, due to methodological difficulties the function of the nucleo-olivary (NO) pathway, which links the CN with the IO, has been neglected, hindering completion of the cerebellar theory. To crack the relevant temporal codes of this loop I have developed specific viral optogenetic tools that allow for targeted control of the NO pathway. Using them I will define the NO interactions that take place during behavior and learning, and examine how these interactions are perturbed in neurological disorders.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CRANOC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CRANOC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More