Opendata, web and dolomites

3DTTool

Next Generation of Cutting Tools Using Additive Manufacturing Technology I, Phase 1

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 3DTTool project word cloud

Explore the words cloud of the 3DTTool project. It provides you a very rough idea of what is the project "3DTTool" about.

manufacturing    trl6    blocks    invented    materials    adding    tool    broadly    competitive    rates    modern    handling    benefits    mining    30    thread    cut    little    bulk    reaching    3dttool    time    generation    conventional    environment    clear    worldwide    uuml    flexibility    disruptive    designing    industrially    waste    ways    screw    total    savings    price    threads    solution    client    building    17    rmer    spur    14       lightweight    tools    reduce    automotive    lighter    additive    printing    besides    segments    our    verify    rate    cooling    nature    commercial    operations    lubrication    environmentally    customised    demonstrated    performance    maritime    full    week    annual    view    severely    lacking    stronger    50    offshore    solutions    ago    offers    3d    spans    10    60    mature    coatings    clients    business    day    feasibility    innovation    continue    machinery    viability    stagnating    alternating    situated    customisation    weeks    cutting    financial    wear    industry    innovations   

Project "3DTTool" data sheet

The following table provides information about the project.

Coordinator
DANSKE VAERKTOEJ APS 

Organization address
address: HAMMERHOLMEN 18 1
city: HVIDOVRE
postcode: 2650
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website http://www.thurmer.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.1.5. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing)
2. H2020-EU.2.1.3. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials)
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
4. H2020-EU.2.1.2. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2016
 Duration (year-month-day) from 2016-06-01   to  2016-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DANSKE VAERKTOEJ APS DK (HVIDOVRE) coordinator 50˙000.00

Map

 Project objective

Our goal is to develop the next generation of thread cutting tools by using additive manufacturing technology (3D printing). Thread cutting tools are used to make screw threads – the main building blocks of modern day machinery. However, these tools have developed very little since they were invented over 100 years ago besides alternating materials used or adding new coatings for the tools to make them stronger. The total Tool Cutting industry worldwide is estimated to be about €17.2 b with average annual growth of about 4% . The bulk of the industry operations are within specific segments: offshore, maritime, automotive and mining – and most of these clients require highly customised tools due to the nature of their business. As such, the Tool Cutting industry spans broadly and innovations that spur new products and ways of working will have far-reaching and important consequences. Printing thread cutting tools in 3D will bring about a high level of innovation to this mature and stagnating industry and will bring about clear and much needed benefits compared to the existing solutions: 1. Improved performance: reduced wear-rate to increase cut rates by 30%-50% 2. Disruptive solution to cooling and lubrication issues: current tools are severely lacking in this aspect 3. Short production lead-time: the new tools reduce production time from 4-14 weeks to 1 week 4. Lightweight product for easy handling: 3D printing enables 60% lighter tools 5. Price competitive offering: expected savings of 10%-30% compared to conventional tools 6. Environmentally friendly product: no waste by-product 7. High-level of client driven customisation: designing in 3D offers full flexibility and adaptation Thürmer 3D Tools project is situated at TRL6 as a technology demonstrated in an industrially relevant environment. We therefore propose a Feasibility Study to verify the technical, commercial and financial viability of the 3DTTool concept with a view to continue to a Phase 2 application.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DTTOOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DTTOOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.5.;H2020-EU.2.1.3.;H2020-EU.2.3.1.;H2020-EU.2.1.2.)

SUPPLEPRINT (2018)

Super Productive Line Printing Inkjet

Read More  

HIL PT System (2017)

Revolutionary, cost effective, spatially efficient, proton therapy system for cancer treatment.

Read More  

Volumizer (2018)

A natural, non-surgical, and safe facial filler which treats the root cause of facial ageing.

Read More