Opendata, web and dolomites

SEIC SIGNED

Setting Earth's Initial Conditions: A fluid dynamics study of core-mantle differentiation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SEIC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE LYON 1 CLAUDE BERNARD 

Organization address
address: BOULEVARD DU 11 NOVEMBRE 1918 NUM43
city: VILLEURBANNE CEDEX
postcode: 69622
website: www.univ-Iyon1.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website http://perso.ens-lyon.fr/renaud.deguen/
 Total cost 1˙258˙750 €
 EC max contribution 1˙258˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE LYON 1 CLAUDE BERNARD FR (VILLEURBANNE CEDEX) coordinator 1˙258˙750.00

Map

 Project objective

The initial conditions of the Earth and other terrestrial planets were set 4.5 Gy ago during their accretion from the solar nebula and their concomitant differentiation into an iron-rich core and a silicate mantle. Accretion in the solar system went through several different dynamical phases involving increasingly energetic and catastrophic impacts and collisions. The last phase of accretion, in which most of the Earth mass was accreted, involved extremely energetic collisions between already differentiated planetary embryos (1000 km size), which resulted in widespread melting and the formation of magma oceans in which metal and silicates segregated to form the core and mantle. Geochemical data provide critical information on the timing of accretion and the prevailing physical conditions, but it is far from a trivial task to interpret the geochemical data in terms of physical conditions and processes. I propose here a fluid dynamics oriented study of metal-silicate interactions and differentiation following planetary impacts, based in part on fluid dynamics laboratory experiments. The aim is to answer critical questions pertaining to the dynamics of metal-silicate segregation and interactions during each core-formation events, before developing parameterized models of metal-silicate mass and heat exchange, which will then be incorporated in geochemical models of the terrestrial planets formation and differentiation. The expected outcomes are a better understanding of the physics of metal-silicate segregation and core-mantle differentiation, as well as improved geochemical constraints on the timing and physical conditions of the terrestrial planets formation.

 Publications

year authors and title journal last update
List of publications.
2018 V. Lherm, R. Deguen
Small-scale metal/silicate equilibration during core formation: the influence of stretching enhanced diffusion on mixing
published pages: , ISSN: 2169-9313, DOI: 10.1029/2018JB016537
Journal of Geophysical Research: Solid Earth 123 2019-05-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SEIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SEIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RECON (2019)

Reprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space

Read More  

URBAG (2019)

Integrated System Analysis of Urban Vegetation and Agriculture

Read More  

DDREAMM (2020)

Dna Damage REsponse: Actionabilities, Maps and Mechanisms

Read More