Opendata, web and dolomites

SiLAS SIGNED

SiliconLaser

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SiLAS" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT EINDHOVEN 

Organization address
address: GROENE LOPER 3
city: EINDHOVEN
postcode: 5612 AE
website: www.tue.nl/en

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website http://www.silasproject.eu
 Total cost 3˙985˙418 €
 EC max contribution 3˙985˙417 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-1-2016-2017
 Funding Scheme RIA
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT EINDHOVEN NL (EINDHOVEN) coordinator 1˙286˙716.00
2    IBM RESEARCH GMBH CH (RUESCHLIKON) participant 707˙125.00
3    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) participant 633˙126.00
4    TECHNISCHE UNIVERSITAET MUENCHEN DE (MUENCHEN) participant 592˙363.00
5    FRIEDRICH-SCHILLER-UNIVERSITAT JENA DE (JENA) participant 417˙500.00
6    UNIVERSITAT LINZ AT (LINZ) participant 348˙587.00

Map

 Project objective

Our research aims to revolutionize the electronics industry by adding intra-chip and chip-to-chip communication at the speed of light, offering a significantly reduced energy consumption. Cubic crystal phase SiGe is known to be great for electronics. We propose to develop hexagonal crystal phase SiGe (Hex-SiGe) which features a direct bandgap and will add photonic capabilities to electronics. Direct bandgap silicon has been the holy grail of the semiconductor industry for many years, since it would allow integrating both electronic and optical functionalities on a silicon platform. Recent theoretical calculations predict that hexagonal crystal phase SixGe1-x features a tunable direct bandgap from 1380-1800 nm, exactly coinciding with the low loss window for optical fibre communications. We have recently developed a generic approach to grow defect-free hexagonal SixGe1-x with tunable composition. We propose to demonstrate efficient light emission from direct bandgap SiGe, followed by the development of a SiGe nanolaser. Work towards CMOS integration is included. The demonstration of a Hex-SiGe nanolaser will serve as a game-changer for transforming the electronics industry.

 Deliverables

List of deliverables.
Surface passivation Documents, reports 2020-01-20 16:19:05
Recruitment of researchers Other 2020-01-20 16:19:05
WZ substrates Documents, reports 2020-01-20 16:19:05
Strain dependent PL, TeraHertz Documents, reports 2020-01-20 16:19:05
Technical action check meeting Documents, reports 2020-01-20 16:19:05
Verification direct bandgap Documents, reports 2020-01-20 16:19:05
Scientific action check meeting 1 Documents, reports 2020-01-20 16:19:05
Synthesis of Hex-SiGe Documents, reports 2020-01-20 16:19:05
Annual technical Report Documents, reports 2020-01-20 16:19:05
Terahertz conductivity Documents, reports 2020-01-20 16:19:05
Deliverable website Websites, patent fillings, videos etc. 2020-01-20 16:19:05
Lattice parameters Documents, reports 2020-01-20 16:19:05
Theory Documents, reports 2020-01-20 16:19:05

Take a look to the deliverables list in detail:  detailed list of SiLAS deliverables.

 Publications

year authors and title journal last update
List of publications.
2020 Elham M. T. Fadaly, Alain Dijkstra, Jens Renè Suckert, Dorian Ziss, Marvin A. J. van Tilburg, Chenyang Mao, Yizhen Ren, Victor T. van Lange, Ksenia Korzun, Sebastian Kölling, Marcel A. Verheijen, David Busse, Claudia Rödl, Jürgen Furthmüller, Friedhelm Bechstedt, Julian Stangl, Jonathan J. Finley, Silvana Botti, Jos E. M. Haverkort, Erik P. A. M. Bakkers
Direct-bandgap emission from hexagonal Ge and SiGe alloys
published pages: 205-209, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2150-y
Nature 580/7802 2020-04-15
2019 Philipp Staudinger, Kirsten E. Moselund, Heinz Schmid
Exploring the Size Limitations of Wurtzite III–V Film Growth
published pages: 686-693, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.9b04507
Nano Letters 20/1 2020-02-13
2018 Christopher L. Davies, Jay B. Patel, Chelsea Q. Xia, Laura M. Herz, Michael B. Johnston
Temperature-Dependent Refractive Index of Quartz at Terahertz Frequencies
published pages: 1236-1248, ISSN: 1866-6892, DOI: 10.1007/s10762-018-0538-7
Journal of Infrared, Millimeter, and Terahertz Waves 39/12 2020-02-13
2019 Claudia Rödl, Jürgen Furthmüller, Jens Renè Suckert, Valerio Armuzza, Friedhelm Bechstedt, Silvana Botti
Accurate electronic and optical properties of hexagonal germanium for optoelectronic applications
published pages: 34602, ISSN: 2475-9953, DOI: 10.1103/physrevmaterials.3.034602
Physical Review Materials 3/3 2020-01-20
2019 Abderrezak Belabbes, Friedhelm Bechstedt
Forbidden Band-Edge Excitons of Wurtzite-GaP: A Theoretical View
published pages: 1800238, ISSN: 0370-1972, DOI: 10.1002/pssb.201800238
physica status solidi (b) 256/2 2020-01-20
2018 Philipp Staudinger, Svenja Mauthe, Kirsten E. Moselund, Heinz Schmid
Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth Planes
published pages: 7856-7862, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.8b03632
Nano Letters 18/12 2020-01-20

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SILAS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SILAS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

ATEMPGRAD (2019)

Analysing Temperature Effects with a Mobile and Precise Gradient Device

Read More  

WiPLASH (2019)

Architecting More Than Moore – Wireless Plasticity for Heterogeneous Massive Computer Architectures

Read More  

ALICE (2019)

Active Living Infrastructure: Controlled Environment

Read More