Explore the words cloud of the IMMUNE CELL SWARMS project. It provides you a very rough idea of what is the project "IMMUNE CELL SWARMS" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2016-STG |
Funding Scheme | ERC-STG |
Starting year | 2017 |
Duration (year-month-day) | from 2017-02-01 to 2022-01-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (Munich) | coordinator | 1˙500˙000.00 |
Neutrophils are essential effector cells of the innate immune response. Intravital microscopy studies have recently changed our perspective on neutrophil tissue dynamics. They revealed swarm-like migration patterns in several models of inflammation and infection: Neutrophil populations show strikingly coordinated behavior with phases of highly directed chemotaxis and clustering at local sites of tissue damage. My previous work established that neutrophils self-amplify this swarming response by auto-signaling, which provided the first molecular basis for the collective nature of neutrophil swarms (Lämmermann et al., Nature 2013). However, we are still at the beginning of unraveling the molecular pathways behind this newly discovered phenomenon.
Most importantly, we completely lack insight into the signals and mechanisms that stop neutrophil swarms in the resolution phase of an immune response. Since excess neutrophil accumulations cause deleterious tissue destruction in many inflammatory diseases, novel insights into the mechanisms, which prevent extensive swarm aggregation, might be of considerable therapeutic value. In accord with this, our proposal follows three aims: (i) dissecting the cellular and molecular mechanisms that control the resolution phase of neutrophil swarming, (ii) establishing a conceptual framework of how swarming immune cells adapt their dynamics to changing inflammatory milieus, and (iii) developing an integrated view on how neutrophil swarms are controlled by secondary waves of myeloid cell swarms. To achieve our goals, we will combine targeted mouse genetics with live cell imaging of immune cell dynamics in living tissues and the use of innovative mimics of physiological environments.
Our future findings on innate immune cell swarms promise to (i) advance our knowledge on leukocyte navigation in complex inflammatory tissues and (ii) provide new avenues for the therapeutic modulation of tissue regeneration after inflammation and infection.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
Tim Lämmermann, Wolfgang Kastenmüller Concepts of GPCR â€controlled navigation in the immune system published pages: 205-231, ISSN: 0105-2896, DOI: 10.1111/imr.12752 |
Immunological Reviews 289/1 | 2019-06-06 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMMUNE CELL SWARMS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "IMMUNE CELL SWARMS" are provided by the European Opendata Portal: CORDIS opendata.