Opendata, web and dolomites

CHEMMINE SIGNED

Chemical proteome mining for functional annotation of disease relevant proteins

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CHEMMINE project word cloud

Explore the words cloud of the CHEMMINE project. It provides you a very rough idea of what is the project "CHEMMINE" about.

basis    screen    compound    little    stable    molecules    cells    uncharacterized    insights    annotation    inhibitors    members    power    healthy    inventory    drug    modulating    diseases    function    phosphodonor    post    translational    goals    proteins    catalyze    binding    genome    functionalized    mine    multidisciplinary    record    nucleophilic    stability    disease    detection    tools    roles    proteome    enzyme    molecular    reaching    identification    libraries    cofactors    fractions    convert    report    biological    aspartate    customized    diseased    close    analytic    platforms    sub    traps    families    provides    suitable    fraction    modification    protein    sequence    family    strategies    phosphorylation    unknown    synthesis    phosphoaspartate    first    corresponding    platform    utilizes    annotate    enzymes    proteomic    transient    consolidating    despite    sequencing    utilize    gap    genes    group    modifications    proteomics    similarity    complement    contemporary    assign    bioinformatic    cellular    searches    functionally    escapes    cognate    chemical    strategy    proteomes    camouflaged    candidate    exploits   

Project "CHEMMINE" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET MUENCHEN 

Organization address
address: Arcisstrasse 21
city: MUENCHEN
postcode: 80333
website: www.tu-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙936˙250 €
 EC max contribution 1˙936˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-03-01   to  2022-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 1˙936˙250.00

Map

 Project objective

Genome sequencing projects have provided unique insights into the cellular inventory of genes and their corresponding protein products. Despite this success, a large fraction of cellular proteins remains functionally uncharacterized. Their annotation represents a major challenge for contemporary research, reaching beyond the power of bioinformatic sequence similarity searches. Thus multidisciplinary strategies consolidating chemical and biological methods are required to close this gap. We here approach the challenge by two chemical proteomic platforms that focus on disease relevant sub-fractions of the uncharacterized proteome. The first platform utilizes functionalized cofactors that exploit cognate cellular uptake systems and report specific binding of large enzyme families. The molecules will be applied to mine cellular proteomes for unknown family members with crucial roles in diseases and assign their function. The second platform exploits phosphoaspartate as an important disease-related post-translational modification. Due to low stability, this transient modification currently escapes detection by established proteomic procedures. Moreover, little is known about the enzymes that catalyze aspartate phosphorylation. We here use specific nucleophilic traps that convert phosphoaspartate into stable modifications suitable for analytic detection. In addition, the complement of currently unknown phosphodonor proteins will be identified with customized tools. With these platforms we aim to functionally annotate sub-fractions of the uncharacterized proteome and utilize our tools for the identification of new drug targets by comparative analysis of healthy and diseased cells. Finally, we apply the camouflaged molecular design strategy in the synthesis of compound libraries to screen for candidate inhibitors against selected, disease-modulating targets. The previous record of my group in chemical proteomics provides a strong basis to achieve these challenging goals.

 Publications

year authors and title journal last update
List of publications.
2019 Anja Fux, Martin Pfanzelt, Volker C. Kirsch, Annabelle Hoegl, Stephan A. Sieber
Customizing Functionalized Cofactor Mimics to Study the Human Pyridoxal 5′-Phosphate-Binding Proteome
published pages: 1461-1468.e7, ISSN: 2451-9456, DOI: 10.1016/j.chembiol.2019.08.003
Cell Chemical Biology 26/10 2019-10-29
2018 Annabelle Hoegl, Matthew B. Nodwell, Volker C. Kirsch, Nina C. Bach, Martin Pfanzelt, Matthias Stahl, Sabine Schneider, Stephan A. Sieber
Mining the cellular inventory of pyridoxal phosphate-dependent enzymes with functionalized cofactor mimics
published pages: 1234-1245, ISSN: 1755-4330, DOI: 10.1038/s41557-018-0144-2
Nature Chemistry 10/12 2019-10-29

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHEMMINE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHEMMINE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More  

OSIRIS (2020)

Automatic measurement of speech understanding using EEG

Read More