Opendata, web and dolomites

Origami-SEQ SIGNED

SINGLE-MOLECULE DNA SEQUENCING THROUGH DNA ORIGAMI NANOANTENNAS.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Origami-SEQ" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://origamiseq.wordpress.com
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2019-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 86˙374.00
2    TECHNISCHE UNIVERSITAET BRAUNSCHWEIG DE (BRAUNSCHWEIG) participant 73˙086.00

Map

 Project objective

The inner working of many fundamental biological nanomachines implies many stochastic changes in conformation and molecular interactions. These changes are reflected as variability in the activity of the same molecule over time, and in heterogeneous activities between different molecules. By the direct observation at the molecular scale of these nanomachines activity, single-molecule fluorescence techniques have gained access to this stochastic information, which is otherwise missed by bulk techniques but is essential for their understanding. However, the widespread use of these techniques in many biological systems has been hampered by the low working concentration (nM) determined by the diffraction limit of light, and current nanophotonic solutions to this problem are technically too demanding. Here, we propose self-assembled DNA origami nanoantennas as nanophotonic platforms aiming to break this concentration barrier by means of fluorescence signal enhancing and reduction of the observation volume. The versatility of DNA origami structures, biocompatibility and ability for site-directed immobilization of biomolecules, make them perfectly suited to perform complex biological assays. In the presented action we aim to achieve single-molecule fluorescence DNA sequencing using DNA origami nanoantennas to probe the potential of these platforms to perform complex bioassays, in the high concentration regime and demanding multiplexing. Moreover, since they avoid the fabrication and instrumental challenges related to other nanophotonic devices, self-assembly DNA origami nanoantennas are amenable, easy to handle and friendly technology to the biological experimenter, and thus we expect to boost their use in biology. Besides, the fulfilment of this action will provide the fellow with a complete formative training that would boost his future scientific career, and will generate also a new DNA-sequencing technology that will impact positively European scientific excellence.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ORIGAMI-SEQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ORIGAMI-SEQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

E-CLIPS (2019)

Effects of Cross-Linguistic Interactions on Perception of Speech

Read More