Explore the words cloud of the MODCOMS project. It provides you a very rough idea of what is the project "MODCOMS" about.
The following table provides information about the project.
Coordinator |
CHALMERS TEKNISKA HOEGSKOLA AB
Organization address contact info |
Coordinator Country | Sweden [SE] |
Total cost | 178˙993 € |
EC max contribution | 178˙993 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2016 |
Funding Scheme | MSCA-IF-GF |
Starting year | 2018 |
Duration (year-month-day) | from 2018-02-05 to 2020-02-04 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | CHALMERS TEKNISKA HOEGSKOLA AB | SE (GOETEBORG) | coordinator | 178˙993.00 |
2 | NORTHWESTERN UNIVERSITY | US (EVANSTON, ILLINOIS) | partner | 0.00 |
Interfaces between oxides can provide entirely new ways to realize novel properties. The goal of this research project is to further clarify the fundamental relationships between composition, crystal structure and ionic transport properties in a novel system based on the hexagonal YMnO3 type structure. This system shows a remarkably large reversible - oxygen storage capacity (LR-OSC) at very low temperatures 150-400C, and the experienced researcher(ER) hypothesizes that this transition may strongly depend on the energy related to the hetero-structure interface (HSI) formation that is naturally formed in modulated composite structures (MODCOMS); in this case between an YMnO3 and Y2Mn2O7 based structure in 3D (i.e., throughout the bulk material). Here, selected promising compositions from the ER’s preliminary results, where cationic substitutions have stabilized the mentioned transition from previously >100bar O2 gas pressure to 1atm P(O2), and can be synthesized under ambient air conditions will be used to make detailed studies possible at practical conditions. The ER will study the structural, thermogravimetric, electronic, thermodynamic and kinetic properties at the host at Northwestern University who is a well renowned expert in the field of oxides. The results from experiments will be linked to computational modeling studies at the returning host group at Chalmers. The overall goal will be to find an experimental and theoretical guiding principle to design HSI in MODCOMS, to combine the excellent performance achieved from HSI in 2D by thin film techniques, with the low production costs for bulk materials by using interfaces in 3D in MODCOMS. The new insights will lead to new breakthroughs in the design of novel materials systems that can utilize interfacial transport in 3D to realize ionic transport and oxygen storage at very low temperatures; properties highly desirable for clean energy technologies like solid oxide fuel cells and heterogeneous catalysts.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MODCOMS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MODCOMS" are provided by the European Opendata Portal: CORDIS opendata.