Opendata, web and dolomites

ActiveBioFluids SIGNED

Origins of Collective Motion in Active Biofluids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ActiveBioFluids project word cloud

Explore the words cloud of the ActiveBioFluids project. It provides you a very rough idea of what is the project "ActiveBioFluids" about.

rheinhardtii    swimming    green    unravel    precisely    led    algae    dynamically    organism    mu    microorganisms    collective    perturbations    protist    cilia    area    ubiquitous    biological    spontaneous    contact    experiments    arising    driving    underlying    physicists    yield    direct    length    scales    till    innovation    synthetically    unperturbed    world    observations    chlamydomonas    tomographic    principles    incorporate    setup    embryonic    dominant    tweezers    reproducing    organisms    track    theoretical    synchronization    question    consists    biofluids    natural    biophysics    origins    experimental    mechanisms    motion    fundamental    tackles    physiological    cells    3d    challenged    model    paramecium    suspensions    active    biologists    micron    optical    time    interactions    biofilm    hydrodynamic    piv    crucially    flows    transduction    emergence    signatures    tremendous    coherent    captivated    motile    interact    metachronal    wave    flagella    force    highlighted    mechanical    view    alike    signal   

Project "ActiveBioFluids" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 1˙500˙000.00

Map

 Project objective

The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.

Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.

This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.

 Publications

year authors and title journal last update
List of publications.
2019 Daniel Tam and Koen Muller
Open source package for the Calibration of Multiple Cameras for Large-Scale Experiments Using a Freely Moving Calibration Target
published pages: , ISSN: , DOI: 10.4121/uuid:3b0134e7-4436-4c6f-964b-d3dfd4ab7770
2020-02-06
2020 K. Muller, C. K. Hemelrijk, J. Westerweel, D. S. W. Tam
Calibration of multiple cameras for large-scale experiments using a freely moving calibration target
published pages: , ISSN: 0723-4864, DOI: 10.1007/s00348-019-2833-z
Experiments in Fluids 61/1 2020-02-06
2019 Da Wei, Parviz Ghoddoosi Dehnavi, Marie-Eve Aubin-Tam, Daniel Tam
Is the Zero Reynolds Number Approximation Valid for Ciliary Flows?
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.122.124502
Physical Review Letters 122/12 2020-02-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ACTIVEBIOFLUIDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ACTIVEBIOFLUIDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

OAlipotherapy (2018)

Long-retention liposomic drug-delivery for intra-articular osteoarthritis therapy

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More