Opendata, web and dolomites

GrapheneBiosensor SIGNED

Electrochemical Graphene Sensors as Early Alert Tools for Algal Toxin Detection in Water

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GrapheneBiosensor project word cloud

Explore the words cloud of the GrapheneBiosensor project. It provides you a very rough idea of what is the project "GrapheneBiosensor" about.

solutions    mc    phosphatases    drinking    intrahepatic    exposure    detergents    electrochemical    contained    electrochemically    sources    monitoring    provisional    instruments    time    frequently    immune    agricultural    had    hemorrhage    physical    world    ease    functionalization    health    electrical    ing    graphene    1998    occurrence    conventional    liver    eutrophication    inhibiting    liquid    damage    urban    mu    probably    anthropogenic    laboratory    active    conductivity    2a    spectrometry    poisonings    protein    lr    animals    expensive    blooms    prevent    bodies    mass    organization    pp2a    algae    immunosensors    manufacturing    ms    sensitive    aqueous    prolonged    cyanobacteria    waste    alternatives    followed    humans    biosensors    algal    situ    microcystins    hplc    harmful    rapid    demanding    guideline    quality    episodes    broad    death    fit    run    bio    concentration    skills    material    ppl    toxic    acute    sophisticated    biochemical    limit    off    chromatography    assays    potent    water    portable    confirmed    warming    worldwide    microcystin    potentials    performance    blue    surface    toxin    assigned    responsible    purpose    detect    massive    area    global    candidate    consuming    times   

Project "GrapheneBiosensor" data sheet

The following table provides information about the project.

Coordinator
SWANSEA UNIVERSITY 

Organization address
address: SINGLETON PARK
city: SWANSEA
postcode: SA2 8PP
website: www.swan.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-26   to  2019-11-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SWANSEA UNIVERSITY UK (SWANSEA) coordinator 195˙454.00

Map

 Project objective

Episodes of harmful blue algae blooms and the associated algal toxin microcystin-LR (MC-LR) occur frequently in bodies of water worldwide as consequences of eutrophication resulting from anthropogenic activities such as agricultural run-off, urban waste, and manufacturing of detergents and global warming. It had been confirmed that microcystins were responsible for some poisonings of animals and humans where water sources contained toxic cyanobacteria blooms. Microcystins were potent and specific in inhibiting protein phosphatases 1 and 2A (PPl, PP2A). Acute or prolonged exposure to microcystins would cause liver damage, followed by a massive intrahepatic hemorrhage and probably leading to death. In 1998, the provisional guideline concentration limit of 1 μg/L MC-LR in drinking water was assigned by the World Health Organization (WHO). The development of reliable methods for monitoring MC-LR in water resources is of great interest to determine the occurrence and to prevent exposure to the toxin. Several methods have been developed to detect MC-LR, such as high-performance liquid chromatography/mass spectrometry (HPLC/MS) , bio-, biochemical- and immune-assays, which require long processing times, sophisticated instruments, complex procedures, or high processing cost and are in general used in the laboratory, not in situ. A sensitive, specific, simple, and rapid method for monitoring MC-LR could help to prevent exposure to the toxin. The unique physical and electrochemical properties (e.g., high electrical conductivity, ease of functionalization, high electrochemically active surface area, and broad range of working potentials in aqueous solutions) of graphene make them a candidate material for developing novel and fit-for-purpose electrochemical biosensors/immunosensors as alternatives to the time-consuming, expensive, non-portable and often skills-demanding conventional methods of analysis involved in water quality assessment.

 Publications

year authors and title journal last update
List of publications.
2018 Wei Zhang, Mike B. Dixon, Christopher Saint, Kar Seng Teng, Hiroaki Furumai
Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art
published pages: 1233-1245, ISSN: 2379-3694, DOI: 10.1021/acssensors.8b00359
ACS Sensors 3/7 2020-02-27
2018 Wei Zhang, Baoping Jia, Hiroaki Furumai
Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-28959-w
Scientific Reports 8/1 2020-02-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAPHENEBIOSENSOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAPHENEBIOSENSOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More