Opendata, web and dolomites

REBUILD

Mechanisms of sarcomeric protein homeostasis during physical exercise and ageing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 REBUILD project word cloud

Explore the words cloud of the REBUILD project. It provides you a very rough idea of what is the project "REBUILD" about.

genetics    ageing    stepping    nature    orientated    spectrometry    regulation    capacity    leads    generation    ultimately    stone    scientific    forces    healthy    force    screen    damaged    dynamics    host    elderly    mechanical    coordinated    replacement    quantitative    biomechanics    rebuild    biology    integrate    hypothesis    usa    consequence    suboptimal    independence    life    biomechanical    mechanisms    homeostasis    driving    older    crossroads    francisco    precise    exercise    animal    during    vivo    individuals    cells    lack    combining    training    ing    expertise    muscle    candidate    population    interventions    function    quantify    acquired    fibers    homeostatic    genetic    benefit    society    proteomics    turnover    expand    physical    fiber    free    flight    temporal    physiological    silac    subjected    delay    protein    decline    position    constantly    maintenance    progressive    accurately    stress    discovery    mass    health    interdisciplinary    establishing    create    proteins    developmental    power    line    western    movements    researcher    tissue    san    dynamic    degenerate   

Project "REBUILD" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website http://muscledynamics.org/
 Total cost 185˙076 €
 EC max contribution 141˙203 € (76%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2019-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 141˙203.00

Map

 Project objective

During ageing muscle fibers are constantly subjected to high forces resulting in mechanical stress on cells and proteins. As a consequence they can degenerate, leading to suboptimal force generation, lack of coordinated movements and ultimately to muscle failure in the elderly population. This ageing process that leads to a progressive loss of muscle function has a major health impact on the ageing Western society. Physical activity is known to delay this decline.

The REBUILD project aims to determine the temporal dynamics of protein replacement during life of a muscle fiber by SILAC-based mass spectrometry and genetics. It will integrate biomechanics with muscle homeostasis and accurately quantify the impact of physical activity on protein turnover and investigate the physiological consequences for the ageing animal. By combining the power of genetics and SILAC-based proteomics with behaviour of free flight under defined exercise conditions, we create a unique position for a discovery orientated large-scale in vivo genetic screen. The interdisciplinary nature of the project will allow establishing novel hypothesis, combining muscle biomechanics as a driving force behind dynamic maintenance of the muscle tissue during ageing.

The experienced researcher will expand on previous training acquired in San Francisco, USA, and establish a new line of research in the crossroads of two developing fields (quantitative proteomics and biomechanical regulation of tissue homeostasis). This will be a stepping stone for his scientific independence. The host will expand on its expertise on developmental regulation of muscle formation and benefit from the expertise of the candidate in the biology of ageing and homeostasis.

A precise understanding of mechanisms that control homeostatic replacement of damaged proteins in muscle fibers should foster interventions aimed at maintenance of muscle capacity in older individuals and thus, an important step towards healthy ageing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REBUILD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REBUILD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More