Opendata, web and dolomites

OPTiAGE

The trade-off between longevity and reproduction: optimal control of aging

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OPTiAGE project word cloud

Explore the words cloud of the OPTiAGE project. It provides you a very rough idea of what is the project "OPTiAGE" about.

advantage    longevity    ultimately    combining    developmental    partitioning    extension    food    model    combination    environments    thereby    poor    labelling    modulate    nutrient    nutrients    dictated    elegans    diverse    organismal    quantify    animals    soma    predicted    reproduction    lifespan    optimal    shorter    line    longer    isotope    restriction    optimality    organisms    disposable    trade    allocation    resource    accumulation    postulates    mathematical    genetics    rate    inverse    rhesus    mutation    proposes    function    varies    evolutionary    worms    principles    kinetic    repair    genetically    genetic    monkeys    scarce    plentiful    adapt    off    continuous    alleles    exposed    environment    dst    damage    theory    environmental    experiment    depending    maintenance    unavailable    nematodes    nematode    age    competitive    pave    identical    limitation    fitness    depends    examine    self    shaped    assay    conditions    directed    delayed    maximize    employing    living    aging   

Project "OPTiAGE" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION 

Organization address
address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058
website: www.fmi.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website http://www.towbinlab.org
 Total cost 187˙419 €
 EC max contribution 187˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION CH (BASEL) coordinator 187˙419.00

Map

 Project objective

The lifespan of genetically identical organisms varies depending on the environment they are exposed to. A well-known example is the extension of lifespan by nutrient restriction, as observed in animals as diverse as nematodes and rhesus monkeys. Why does the lifespan of animals change with environmental conditions? Is there an advantage to living longer when food is poor, and to living shorter when food is plentiful? Evolutionary theory, known as the disposable soma theory (DST), proposes that organisms age due to the accumulation of damage. According to theory, aging can be delayed by continuous damage repair, but such repair requires resources which are then unavailable for other tasks, such as reproduction. The DST therefore postulates a trade-off between longevity and reproduction dictated by the limitation of available resources. The optimal allocation of resources to self-maintenance depends on the environment. In particular, increased allocation to self-maintenance is predicted to maximize fitness when nutrients are scarce. Combining theory and experiment, I will investigate how the optimal allocation of resources to self-maintenance depends on nutrient availability using the nematode C. elegans as a model system. I will quantify the partitioning of resources between self-maintenance and reproduction using isotope labelling and kinetic modelling, and modulate resource allocation using available genetic alleles and directed mutation. Employing a competitive growth assay, I will test if fitness depends on resource allocation by an inverse U-shaped function, as predicted by theory and examine how the optimal resource allocation depends on nutrient availability. I will thereby assess if worms adapt their rate of aging to maximize their fitness in different environments. Ultimately, the proposed combination of mathematical modelling and developmental genetics will pave the way for a new line of research using optimality principles to study organismal development.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OPTIAGE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OPTIAGE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More