Opendata, web and dolomites

microKIc SIGNED

Microscopic Origins of Fracture Toughness

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 microKIc project word cloud

Explore the words cloud of the microKIc project. It provides you a very rough idea of what is the project "microKIc" about.

finite    boundaries    propagation    dynamics    material    bcc    discrete    experiments    plasticity    tips    regarded    simulations    milling    obstacles    arrest    mechanical    nial    first    semi    quality    semiconductors    code    dislocations    crack    tip    mechanics    strain    resistance    nucleation    structures    resistant    experimentally    precipitates    tests    validated    components    criteria    predictive    interactions    models    sensitive    microkic    systematically    tested    structural    refractory    materials    multiscale    specimens    micro    safety    atomistic    framework    rate    microstructural    model    ultimate    micromechanical    coupled    beam    toughness    kic    brittle    3d    dislocation    mechanistic    situ    fracture    grain    metals    time    front    ion    constituents    voids    mesoscale    phenomenological    microstructure    experimental    perform    steels    varying    predict    gain    microscopic    guidelines    sufficiently    dependence    undoubtedly    cracks    temperature    initiation    physics    orientation    macroscopic    calibration   

Project "microKIc" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG 

Organization address
address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054
website: www.uni-erlangen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙996˙570 €
 EC max contribution 1˙996˙570 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG DE (ERLANGEN) coordinator 1˙699˙175.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 297˙395.00

Map

 Project objective

The resistance to crack propagation is undoubtedly one of the most important properties of structural materials. However, our current mechanistic understanding of the fracture processes in typical semi-brittle materials like steels, refractory metals or semiconductors is not sufficiently advanced to predict the fracture toughness KIc and its dependence on the microstructure, temperature and strain rate. Therefore, KIc is commonly regarded as a phenomenological material parameter for fracture mechanics models that require experimental calibration.

The aim of microKIc is to study fracture in model materials in order to gain a detailed understanding of the microscopic crack-tip processes during fracture initiation, propagation and arrest, and to systematically study the interactions of cracks with constituents of the microstructure like dislocations, voids, precipitates and grain boundaries. To this end, we will perform fully 3D, large-scale atomistic simulations on cracks in bcc-based materials (W, NiAl) with varying crack orientation, crack front quality, and in the presence of dislocations and microstructural obstacles. The obtained criteria for crack advance and dislocation nucleation at crack tips will be implemented in a coupled finite element - discrete dislocation dynamics code, which will allow for the first time a fully 3D study of fracture and crack-tip plasticity at the mesoscale. The simulations will be compared to in-situ micro-mechanical tests on well-characterized fracture specimens produced by focused ion beam milling.

The ultimate goal of microKIc is to use this experimentally validated multiscale modelling framework to develop a microstructure-sensitive, physics-based micromechanical model of the fracture toughness, which will be tested against macroscopic fracture experiments. Such predictive models are crucial for the development of new failure-resistant materials and for improved design guidelines for safety-relevant structures and components.

 Publications

year authors and title journal last update
List of publications.
2019 Eva I. Preiß, Hao Lyu, Jan P. Liebig, Gunther Richter, Florentina Gannott, Patric A. Gruber, Mathias Göken, Erik Bitzek, Benoit Merle
Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films
published pages: 3483-3494, ISSN: 0884-2914, DOI: 10.1557/jmr.2019.262
Journal of Materials Research 34/20 2020-01-29
2018 Johannes J. Möller, Erik Bitzek, Rebecca Janisch, Hamad ul Hassan, Alexander Hartmaier
Fracture ab initio: A force-based scaling law for atomistically informed continuum models
published pages: 3750-3761, ISSN: 0884-2914, DOI: 10.1557/jmr.2018.384
Journal of Materials Research 33/22 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROKIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROKIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SERENiTi (2018)

Software Enhanced Research iN Transient kinetics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More