Opendata, web and dolomites

microKIc SIGNED

Microscopic Origins of Fracture Toughness

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 microKIc project word cloud

Explore the words cloud of the microKIc project. It provides you a very rough idea of what is the project "microKIc" about.

toughness    kic    ultimate    macroscopic    initiation    refractory    predict    voids    phenomenological    strain    microstructural    situ    varying    undoubtedly    precipitates    model    simulations    resistant    tip    mesoscale    guidelines    microkic    criteria    milling    dislocations    finite    tips    framework    systematically    experimental    semi    structural    micromechanical    experimentally    physics    coupled    tested    regarded    specimens    dependence    materials    multiscale    constituents    interactions    nial    cracks    rate    ion    predictive    fracture    dislocation    front    steels    metals    mechanistic    microscopic    atomistic    micro    sufficiently    plasticity    first    tests    obstacles    nucleation    experiments    arrest    grain    orientation    brittle    boundaries    code    beam    sensitive    validated    resistance    structures    discrete    microstructure    material    3d    models    mechanics    time    calibration    propagation    bcc    gain    semiconductors    safety    quality    components    crack    dynamics    mechanical    temperature    perform   

Project "microKIc" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG 

Organization address
address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054
website: www.uni-erlangen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙996˙570 €
 EC max contribution 1˙996˙570 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG DE (ERLANGEN) coordinator 1˙699˙175.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 297˙395.00

Map

 Project objective

The resistance to crack propagation is undoubtedly one of the most important properties of structural materials. However, our current mechanistic understanding of the fracture processes in typical semi-brittle materials like steels, refractory metals or semiconductors is not sufficiently advanced to predict the fracture toughness KIc and its dependence on the microstructure, temperature and strain rate. Therefore, KIc is commonly regarded as a phenomenological material parameter for fracture mechanics models that require experimental calibration.

The aim of microKIc is to study fracture in model materials in order to gain a detailed understanding of the microscopic crack-tip processes during fracture initiation, propagation and arrest, and to systematically study the interactions of cracks with constituents of the microstructure like dislocations, voids, precipitates and grain boundaries. To this end, we will perform fully 3D, large-scale atomistic simulations on cracks in bcc-based materials (W, NiAl) with varying crack orientation, crack front quality, and in the presence of dislocations and microstructural obstacles. The obtained criteria for crack advance and dislocation nucleation at crack tips will be implemented in a coupled finite element - discrete dislocation dynamics code, which will allow for the first time a fully 3D study of fracture and crack-tip plasticity at the mesoscale. The simulations will be compared to in-situ micro-mechanical tests on well-characterized fracture specimens produced by focused ion beam milling.

The ultimate goal of microKIc is to use this experimentally validated multiscale modelling framework to develop a microstructure-sensitive, physics-based micromechanical model of the fracture toughness, which will be tested against macroscopic fracture experiments. Such predictive models are crucial for the development of new failure-resistant materials and for improved design guidelines for safety-relevant structures and components.

 Publications

year authors and title journal last update
List of publications.
2019 Eva I. Preiß, Hao Lyu, Jan P. Liebig, Gunther Richter, Florentina Gannott, Patric A. Gruber, Mathias Göken, Erik Bitzek, Benoit Merle
Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films
published pages: 3483-3494, ISSN: 0884-2914, DOI: 10.1557/jmr.2019.262
Journal of Materials Research 34/20 2020-01-29
2018 Johannes J. Möller, Erik Bitzek, Rebecca Janisch, Hamad ul Hassan, Alexander Hartmaier
Fracture ab initio: A force-based scaling law for atomistically informed continuum models
published pages: 3750-3761, ISSN: 0884-2914, DOI: 10.1557/jmr.2018.384
Journal of Materials Research 33/22 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROKIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROKIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

FunDiT (2019)

Functional Diversity of T cells

Read More