Opendata, web and dolomites

DNLIBiomed

Biomedical Information Synthesis with Deep Natural Language Inference

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DNLIBiomed" data sheet

The following table provides information about the project.

Coordinator
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS - RESEARCH CENTER 

Organization address
address: KEFALLINIAS STREET 46
city: ATHENS
postcode: 11251
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Greece [EL]
 Total cost 82˙326 €
 EC max contribution 82˙326 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2018-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS - RESEARCH CENTER EL (ATHENS) coordinator 82˙326.00

Map

 Project objective

Deep neural networks (DNNs) have become a critical tool in natural language processing (NLP) for a wide variety of language technologies, from syntax to semantics to pragmatics. In particular, in the field of natural language inference (NLI), DNNs have become the de-facto model, providing significantly better results than previous paradigms. Their power lies in their ability to embed complex language ambiguities in high dimensional spaces coupled with non-linear compositional transformations learned to directly optimize task-specific objective functions. We propose to adapt Deep NLI techniques to the biomedical domain, specifically investigating question answering, information extraction and synthesis. The biomedical domain presents many key challenges and a critical impact that standard NLI challenges do not posses. First, while standard NLI data sets requires a system to model basic world knowledge (e.g., that ‘soccer’ is a ‘sport’), they do not presume a rich domain knowledge encoded in various and often heterogeneous resources such as scientific articles, textbooks and structured databases. Second, while standard NLI data sets presume that the answer/inference is encoded in a single utterance, the ability to reason and extract information from biomedical domains often requires information synthesis from multiple utterances, paragraphs, and even documents. Finally, whereas standard NLI is a broad challenge aimed at testing whether computers can make general inferences in language, biomedical texts are a grounded and impactful domain where progress in automated reasoning will directly impact the efficacy of researchers, physicians, publishers and policy makers.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DNLIBIOMED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DNLIBIOMED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

ROAR (2019)

Investigating the Role of Attention in Reading

Read More  

PATH (2019)

Preservation and Adaptation in Turkish as a Heritage Language (PATH) - A Natural Language Laboratory in a Small Dutch Town

Read More