Opendata, web and dolomites

TEQ SIGNED

Testing the Large-Scale Limit of Quantum Mechanics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TEQ project word cloud

Explore the words cloud of the TEQ project. It provides you a very rough idea of what is the project "TEQ" about.

possibility    pursuing    entail    ad    mass    prepare    behavior    employed    will    ion    motional    nature    exquisite    orders    nanocrystal    world    sensitivity    cooling    teq    successful    seems    quality    device    standard    domain    limit    prepared    degrees    optical    goals    predictions    lost    experiments    microscopic    gap    motion    largely    embodying    questions    closing    so    roadmap    unanswered    magnitude    interesting    larger    metrological    mechanisms    configurations    empowered    pinpoint    manufactured    scattered    explicit    hoc    macroscopic    ultra    light    technological    counterpart    date    decoherence    serve    exhibit    complexity    quantitatively    interferometry    frequency    particle    radio    sensors    performed    spontaneous    parametric    overarching    modern    sources    spoiling    trap    quantum    contribution    freedom    grows    experimentally    wave    displacements    quantumness    noise    mechanics    feedback    rule    collapse    abandon    operate    surpassing    physics    environments    precluded   

Project "TEQ" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI TRIESTE 

Organization address
address: PIAZZALE EUROPA 1
city: TRIESTE
postcode: 34127
website: www.units.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://tequantum.eu/
 Total cost 4˙371˙473 €
 EC max contribution 4˙371˙473 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-1-2016-2017
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI TRIESTE IT (TRIESTE) coordinator 621˙260.00
2    UNIVERSITY OF SOUTHAMPTON UK (SOUTHAMPTON) participant 727˙991.00
3    UNIVERSITY COLLEGE LONDON UK (LONDON) participant 518˙996.00
4    AARHUS UNIVERSITET DK (AARHUS C) participant 515˙625.00
5    THE QUEEN'S UNIVERSITY OF BELFAST UK (BELFAST) participant 442˙198.00
6    M-SQUARED LASERS LIMITED UK (GLASGOW) participant 394˙812.00
7    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) participant 393˙840.00
8    ISTITUTO NAZIONALE DI FISICA NUCLEARE IT (FRASCATI) participant 384˙375.00
9    OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN AT (WIEN) participant 372˙375.00

Map

 Project objective

Microscopic systems can be prepared in quantum configurations with no classical counterpart. Such a possibility seems precluded when the 'complexity' of the system grows towards the macroscopic domain: so far we have no evidence of non-classical behavior of the macroscopic world. Why is it so? How is quantumness lost as we abandon the microscopic domain? These questions, which remain to date largely unanswered, address interesting and challenging goals of modern research in physics, and serve the overarching goal of this project. TEQ will establish the large-scale limit of quantum mechanics by pursuing a novel research programme that aims at surpassing the current approach based on matter-wave interferometry. Specifically, the TEQ Consortium will 1) Trap an ad hoc manufactured nanocrystal in a radio-frequency ion trap, cooling it by optical parametric feedback, so as to let it operate in ultra-low noise environments. 2) Determine quantitatively all the major sources of decoherence affecting the nanocrystal, and control them experimentally so as to prepare high-quality quantum states of its motional degrees of freedom. 3) Analyse the light scattered by the nanocrystal to test the quantum predictions for the motion of the particle against those of spontaneous collapse and non-standard decoherence mechanisms, and thus pinpoint/rule-out key quantum-spoiling effects, beyond all the studies performed so far. This roadmap will enable the test of quantum effects for systems whose mass is orders of magnitude larger than that employed in the most successful quantum experiments to date, thus closing the gap with the macroscopic world. Moreover, it will entail significant technological impact: the device that will be built will exhibit exquisite sensitivity to frequency and displacements, thus embodying a significant contribution of explicit technological nature to the design of quantum empowered metrological sensors.

 Deliverables

List of deliverables.
Calibration of decoherence Documents, reports 2020-03-24 14:32:39
1-Colloidal NCs Documents, reports 2020-03-24 14:32:39
Low noise electronics Documents, reports 2020-03-24 14:32:39
Popular press articles Websites, patent fillings, videos etc. 2020-03-24 14:32:39
Low noise environment Documents, reports 2020-03-24 14:32:39
Data Management Plan Open Research Data Pilot 2020-03-24 14:32:39
Press releases Websites, patent fillings, videos etc. 2020-03-24 14:32:38
Website Websites, patent fillings, videos etc. 2020-03-24 14:32:38

Take a look to the deliverables list in detail:  detailed list of TEQ deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 Steve Campbell, Barış Çakmak, Özgür E. Müstecaplıoğlu, Mauro Paternostro, Bassano Vacchini
Collisional unfolding of quantum Darwinism
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.99.042103
Physical Review A 99/4 2020-03-24
2019 N. P. Bullier, A. Pontin, P. F. Barker
Super-resolution imaging of a low frequency levitated oscillator
published pages: 93201, ISSN: 0034-6748, DOI: 10.1063/1.5108807
Review of Scientific Instruments 90/9 2020-03-24
2019 Philippe Allard Guérin, Marius Krumm, Costantino Budroni, Časlav Brukner
Composition rules for quantum processes: a no-go theorem
published pages: 12001, ISSN: 1367-2630, DOI: 10.1088/1367-2630/aafef7
New Journal of Physics 21/1 2020-03-24
2019 Ashley Setter, Jamie Vovrosh, Hendrik Ulbricht
Characterization of non-linearities through mechanical squeezing in levitated optomechanics
published pages: 153106, ISSN: 0003-6951, DOI: 10.1063/1.5116121
Applied Physics Letters 115/15 2020-03-24
2019 Carlo Ottaviani, Cosmo Lupo, Alessandro Ferraro, Mauro Paternostro, Stefano Pirandola
Multipartite entanglement swapping and mechanical cluster states
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.99.030301
Physical Review A 99/3 2020-03-24
2019 R. Puebla, J. Casanova, O. Houhou, E. Solano, M. Paternostro
Quantum simulation of multiphoton and nonlinear dissipative spin-boson models
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.99.032303
Physical Review A 99/3 2020-03-24
2019 A Belenchia, D Benincasa, F Marin, F Marino, A Ortolan, M Paternostro, S Liberati
Tests of quantum gravity-induced non-locality: Hamiltonian formulation of a non-local harmonic oscillator
published pages: 155006, ISSN: 0264-9381, DOI: 10.1088/1361-6382/ab2c0a
Classical and Quantum Gravity 36/15 2020-03-24
2019 Chris Timberlake, Giulio Gasbarri, Andrea Vinante, Ashley Setter, Hendrik Ulbricht
Acceleration sensing with magnetically levitated oscillators above a superconductor
published pages: 224101, ISSN: 0003-6951, DOI: 10.1063/1.5129145
Applied Physics Letters 115/22 2020-03-24
2019 Obinna Abah, Mauro Paternostro
Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics
published pages: , ISSN: 2470-0045, DOI: 10.1103/physreve.99.022110
Physical Review E 99/2 2020-03-24
2019 Michele M. Feyles, Luca Mancino, Marco Sbroscia, Ilaria Gianani, Marco Barbieri
Dynamical role of quantum signatures in quantum thermometry
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.99.062114
Physical Review A 99/6 2020-03-24
2019 Magdalena Zych, Fabio Costa, Igor Pikovski, ÄŒaslav Brukner
Bell’s theorem for temporal order
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-019-11579-x
Nature Communications 10/1 2020-03-24
2019 Flaminia Giacomini, Esteban Castro-Ruiz, ÄŒaslav Brukner
Quantum mechanics and the covariance of physical laws in quantum reference frames
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-08155-0
Nature Communications 10/1 2020-03-24
2019 Chris Timberlake, Marko Toroš, David Hempston, George Winstone, Muddassar Rashid, Hendrik Ulbricht
Static force characterization with Fano anti-resonance in levitated optomechanics
published pages: 23104, ISSN: 0003-6951, DOI: 10.1063/1.5081045
Applied Physics Letters 114/2 2020-03-24
2018 Alessio Belenchia, Robert M. Wald, Flaminia Giacomini, Esteban Castro-Ruiz, ÄŒaslav Brukner, Markus Aspelmeyer
Quantum superposition of massive objects and the quantization of gravity
published pages: , ISSN: 2470-0010, DOI: 10.1103/PhysRevD.98.126009
Physical Review D 98/12 2020-03-24
2018 Tanjung Krisnanda, Chiara Marletto, Vlatko Vedral, Mauro Paternostro, Tomasz Paterek
Probing quantum features of photosynthetic organisms
published pages: , ISSN: 2056-6387, DOI: 10.1038/s41534-018-0110-2
npj Quantum Information 4/1 2020-03-24
2018 Jader P. Santos, Alberto L. de Paula, Raphael Drumond, Gabriel T. Landi, Mauro Paternostro
Irreversibility at zero temperature from the perspective of the environment
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.97.050101
Physical Review A 97/5 2020-03-24
2018 Philippe Allard Guérin, Časlav Brukner
Observer-dependent locality of quantum events
published pages: 103031, ISSN: 1367-2630, DOI: 10.1088/1367-2630/aae742
New Journal of Physics 20/10 2020-03-24
2018 Felix A. Pollock, César Rodríguez-Rosario, Thomas Frauenheim, Mauro Paternostro, Kavan Modi
Operational Markov Condition for Quantum Processes
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.120.040405
Physical Review Letters 120/4 2020-03-24
2018 M. Brunelli, L. Fusco, R. Landig, W. Wieczorek, J. Hoelscher-Obermaier, G. Landi, F. L. Semião, A. Ferraro, N. Kiesel, T. Donner, G. De Chiara, M. Paternostro
Experimental Determination of Irreversible Entropy Production in out-of-Equilibrium Mesoscopic Quantum Systems
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.121.160604
Physical Review Letters 121/16 2020-03-24
2018 Luca Mancino, Marco Sbroscia, Emanuele Roccia, Ilaria Gianani, Valeria Cimini, Mauro Paternostro, Marco Barbieri
Information-reality complementarity in photonic weak measurements
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.97.062108
Physical Review A 97/6 2020-03-24
2018 J. Nobakht, M. Carlesso, S. Donadi, M. Paternostro, A. Bassi
Unitary unraveling for the dissipative continuous spontaneous localization model: Application to optomechanical experiments
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.98.042109
Physical Review A 98/4 2020-03-24
2018 P. G. Di Stefano, J. J. Alonso, E. Lutz, G. Falci, M. Paternostro
Nonequilibrium thermodynamics of continuously measured quantum systems: A circuit QED implementation
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.98.144514
Physical Review B 98/14 2020-03-24
2018 Matteo Carlesso, Andrea Vinante, Angelo Bassi
Multilayer test masses to enhance the collapse noise
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.98.022122
Physical Review A 98/2 2020-03-24
2018 Matteo Carlesso, Mauro Paternostro, Hendrik Ulbricht, Andrea Vinante, Angelo Bassi
Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics
published pages: 83022, ISSN: 1367-2630, DOI: 10.1088/1367-2630/aad863
New Journal of Physics 20/8 2020-03-24
2018 Matteo Carlesso, Luca Ferialdi, Angelo Bassi
Colored collapse models from the non-interferometric perspective
published pages: , ISSN: 1434-6060, DOI: 10.1140/epjd/e2018-90248-x
The European Physical Journal D 72/9 2020-03-24
2018 Ashley Setter, Marko Toroš, Jason F. Ralph, Hendrik Ulbricht
Real-time Kalman filter: Cooling of an optically levitated nanoparticle
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.97.033822
Physical Review A 97/3 2020-03-24
2018 G. Gasbarri, L. Ferialdi
Stochastic unravelings of non-Markovian completely positive and trace-preserving maps
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.98.042111
Physical Review A 98/4 2020-03-24
2018 Muddassar Rashid, Marko Toroš, Ashley Setter, Hendrik Ulbricht
Precession Motion in Levitated Optomechanics
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.121.253601
Physical Review Letters 121/25 2020-03-24
2018 Mario A. Ciampini, Giorgia Pinna, Paolo Mataloni, Mauro Paternostro
Experimental signature of quantum Darwinism in photonic cluster states
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.98.020101
Physical Review A 98/2 2020-03-24
2018 George Winstone, Robert Bennett, Markus Rademacher, Muddassar Rashid, Stefan Buhmann, Hendrik Ulbricht
Direct measurement of the electrostatic image force of a levitated charged nanoparticle close to a surface
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.98.053831
Physical Review A 98/5 2020-03-24
2019 Barış Çakmak, Steve Campbell, Bassano Vacchini, Özgür E. Müstecaplıoğlu, Mauro Paternostro
Robust multipartite entanglement generation via a collision model
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.99.012319
Physical Review A 99/1 2020-03-24
2018 Marko Toroš, Muddassar Rashid, Hendrik Ulbricht
Detection of anisotropic particles in levitated optomechanics
published pages: , ISSN: 2469-9934, DOI: 10.1103/physreva.98.053803
Physical Review A 98/5 2020-03-24
2018 Felix A. Pollock, César Rodríguez-Rosario, Thomas Frauenheim, Mauro Paternostro, Kavan Modi
Non-Markovian quantum processes: Complete framework and efficient characterization
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.97.012127
Physical Review A 97/1 2020-03-24
2018 Stephen L. Adler, Andrea Vinante
Bulk heating effects as tests for collapse models
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.97.052119
Physical Review A 97/5 2020-03-24
2018 Ruchira Mishra, Andrea Vinante, Tejinder P. Singh
Testing spontaneous collapse through bulk heating experiments: An estimate of the background noise
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.98.052121
Physical Review A 98/5 2020-03-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TEQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TEQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

ATEMPGRAD (2019)

Analysing Temperature Effects with a Mobile and Precise Gradient Device

Read More  

WiPLASH (2019)

Architecting More Than Moore – Wireless Plasticity for Heterogeneous Massive Computer Architectures

Read More  

ALICE (2019)

Active Living Infrastructure: Controlled Environment

Read More