Opendata, web and dolomites

RESUSCITATION

Bacterial persister regrowth

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RESUSCITATION project word cloud

Explore the words cloud of the RESUSCITATION project. It provides you a very rough idea of what is the project "RESUSCITATION" about.

salmonella    intoxication    lag    characterization    plan    generate    experimental    antitoxin    first    progress    environment    multidrug    forming    tact    discovery    arrest    force    repertoire    tolerant    proportions    systematic    mechanisms    entry    implication    ways    group    respectively    cells    identification    sensitized    persisters    encounter    offspring    interaction    pressure    pending    antibiotics    transiently    persistence    persist    regrowth    14    modules    persister    proven    additionally    resuming    enzyme    re    dissect    ultimately    underlying    balance    unknown    engulfment    vs    powerful    infectious    removed    relapses    intend    resumption    host    couple    toxin    begin    resuscitation    extend    detoxification    consolidation    model    pth    inducing    activates    unravel    bacteria    antibiotic    question    defence    enzymes    diseases    macrophages    form    biology    detoxifying    toxins    action    counteracting    exit    despite   

Project "RESUSCITATION" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙499˙996 €
 EC max contribution 1˙499˙996 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 1˙499˙996.00

Map

 Project objective

This proposal aims to provide insight into persister resuscitation. Persisters are multidrug-tolerant cells that are transiently non-growing and able to generate viable offspring by resuming growth when antibiotic pressure is removed. Despite their implication in relapses of many infectious diseases, and progress in understanding how persisters form through the action of toxin-antitoxin modules, the mechanisms underlying resuscitation of these persisters are still unknown. The interaction between Salmonella and host macrophages has proven to be a powerful and relevant model to study persister biology since the bacteria specifically respond to engulfment by the host defence cells by forming high proportions of persisters. Upon encounter with the host, Salmonella activates 14 toxins to arrest growth and persist in this environment. With the recent discovery of a detoxifying enzyme (Pth) counteracting the action of a persister-inducing toxin (TacT), thus allowing growth resumption of Salmonella persisters, we can now begin to address the pending question of persister regrowth. The consolidation of my research group around the experimental plan proposed here, will enable us to dissect the balance between intoxication vs. detoxification or entry vs. exit from persistence induced by Tact and Pth respectively. This is the first couple of toxin/detoxifying enzymes to be identified. I intend to extend this knowledge to the whole repertoire of toxins involved in Salmonella persister formation through systematic identification and characterization of the detoxifying mechanisms allowing resuscitation. Additionally I will investigate the lag phase leading to regrowth of persisters; and target the toxins involved in persister formation to force persisters out of growth arrest. This work will unravel persister resuscitation and could ultimately provide ways to force persisters out of that state so they become re-sensitized to antibiotics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RESUSCITATION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RESUSCITATION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

PATHOCODE (2020)

Molecular pathology of anti-viral T cell responses in the central nervous system

Read More