Opendata, web and dolomites

MuDiLingo SIGNED

A Multiscale Dislocation Language for Data-Driven Materials Science

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MuDiLingo project word cloud

Explore the words cloud of the MuDiLingo project. It provides you a very rough idea of what is the project "MuDiLingo" about.

simulations    dislocations    situ    models    full    compressing    impossible    predicting    rational    networks    optical    assembling    seeking    guaranteeing    fundamental    dislocation    mechanisms    structural    methodology    vision    images    small    plastic    mining    data    structures    reused    microstructure    versatile    scientific    semiconductors    time    micro    uses    technologically    crystalline    transfer    unifying    mudilingo    audio    evolve    specifics    answer    materials    questions    understand    reveals    throughput    nearly    thereby    experiment    interacting    carrier    links    functional    scales    bearing    deformation    compression    interoperability    simulation    physics    themselves    microstructures    behaviors    true    completely    sufficiently    superior    preserving    revolutionary    amount    mp3    statistical    extracting    material    defects    analogy    stays    microscopy    century    line    description    automated    nanoscale    direct    conversion    first    length    generation    guide    electronic    tailoring    plasticity    mechanical    metals    evolution    experiments    multiscale    scientists    responsible    language   

Project "MuDiLingo" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG 

Organization address
address: AKADEMIESTRASSE 6
city: FREIBERG
postcode: 9599
website: http://tu-freiberg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://tu-freiberg.de/fakult4/imfd/mimm
 Total cost 1˙499˙145 €
 EC max contribution 1˙499˙145 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-11-01   to  2022-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG DE (FREIBERG) coordinator 1˙356˙645.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 142˙500.00

Map

 Project objective

Crystalline defects in metals and semiconductors are responsible for a wide range of mechanical, optical and electronic properties. Controlling the evolution of dislocations, i.e. line-like defects and the carrier of plastic deformation, interacting both among themselves and with other microstructure elements allows tailoring material behaviors on the micro and nanoscale. This is essential for rational design approaches towards next generation materials with superior mechanical properties.

For nearly a century, materials scientists have been seeking to understand how dislocation systems evolve. In-situ microscopy now reveals complex dislocation networks in great detail. However, without a sufficiently versatile and general methodology for extracting, assembling and compressing dislocation-related information the analysis of such data often stays at the level of “looking at images” to identify mechanisms or structures. Simulations are increasingly capable of predicting the evolution of dislocations in full detail. Yet, direct comparison, automated analysis or even data transfer between small scale plasticity experiments and simulations is impossible, and a large amount of data cannot be reused.

The vision of MuDiLingo is to develop and establish for the first time a Unifying Multiscale Language of Dislocation Microstructures. Bearing analogy to audio data conversion into MP3, this description of dislocations uses statistical methods to determine data compression while preserving the relevant physics. It allows for a completely new type of high-throughput data mining and analysis, tailored to the specifics of dislocation systems. This revolutionary data-driven approach links models and experiments on different length scales thereby guaranteeing true interoperability of simulation and experiment. The application to technologically relevant materials will answer fundamental scientific questions and guide towards design of superior structural and functional materials.

 Publications

year authors and title journal last update
List of publications.
2019 D. Steinberger, H. Song, S. Sandfeld
Machine Learning-Based Classification of Dislocation Microstructures
published pages: , ISSN: 2296-8016, DOI: 10.3389/fmats.2019.0141
frontiers in materials 6, Article 141 2019-09-04
2018 Roman Kositski, Dominik Steinberger, Stefan Sandfeld, Dan Mordehai
Shear relaxation behind the shock front in 1 1 0 molybdenum – From the atomic scale to continuous dislocation fields
published pages: 125-133, ISSN: 0927-0256, DOI: 10.1016/j.commatsci.2018.02.058
Computational Materials Science 149 2019-09-04
2018 A. Prakash, S. Sandfeld
Chances and Challenges in Fusing Data Science with Materials Science
published pages: 493-514, ISSN: 0032-678X, DOI: 10.3139/147.110539
Practical Metallography 55/8 2019-09-04

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MUDILINGO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MUDILINGO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

BALANCE (2019)

Mapping Dispersion Spectroscopically in Large Gas-Phase Molecular Ions

Read More