Opendata, web and dolomites

Plasmonic Reactor SIGNED

Super-resolution mapping of hot carriers on plasmonic nanoparticles for enhanced photochemistry.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Plasmonic Reactor project word cloud

Explore the words cloud of the Plasmonic Reactor project. It provides you a very rough idea of what is the project "Plasmonic Reactor" about.

create    single    light    offers    opened    hole    coherent    therapies    hot    causing    arise    spot    efficiencies    chemical    catalytic    transformation    ultra    optical    carriers    imaging    localized    chemistry    size    photochemical    mapping    nps    photochemistry    spots    energy    manipulating    excitation    pharmaceutical    possibilities    sensitive    equilibrium    electromagnetic    pnps    particle    energies    decay    harvesting    shape    bulk    fine    mediated    reactive    bimetallic    generation    injected    previously    scattering    unexplored    motivated    material    radiative    cross    highlight    perspective    plasmon    electron    enhancement    medical    absorption    enhancements    heat    reactions    enabled    lsprs    selectivity    sections    bond    optoelectronic    spatial    larger    surface    reactivity    hybrid    motion    map    dramatic    conversion    nearby    sensing    pairs    molecule    difficult    close    electrons    resonances    optimization    resolution    nanoscale    nanoparticles    plasmonic    enhanced    particles    photonics    masked   

Project "Plasmonic Reactor" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 171˙457 €
 EC max contribution 171˙457 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 79˙730.00
2    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) participant 91˙727.00

Map

 Project objective

Plasmonic nanoparticles (PNPs) present unique optoelectronic properties that depend on their size and shape and are not present in larger particles or the bulk material. Such properties arise from their localized surface plasmon resonances (LSPRs). LSPRs are the light-induced coherent motion of electrons that produce dramatic enhancements of the electromagnetic field close to the surface of the particle (hot spots) as well as large scattering and absorption cross-sections. These properties have motivated the use of PNPs in many applications including ultra-sensitive sensing, light harvesting, imaging, photonics, and medical and pharmaceutical therapies. Very recently, a previously unexplored feature of LSPRs opened a new perspective. Non-radiative decay of LSPRs can result in the excitation of electron-hole pairs with high, far-from-equilibrium energies known as hot carriers. These carriers can be injected into a nearby molecule causing its chemical transformation. Manipulating LSPRs allows for the fine control of the reactive properties of hot carriers, in a similar way in which it has enabled control of electromagnetic fields. This offers new possibilities in photochemistry, including enhanced efficiencies, spatial distribution of reactivity and bond selectivity. However, determining the role of hot carriers in plasmon-mediated chemistry is a difficult task as it could be masked by other catalytic properties (heat generation and field enhancement). The main objectives of this proposal are: 1) The implementation of an optical method for reactive-spot mapping, which will allow to create a map that highlight areas of low and high photochemical reactivity on single PNPs with high spatial resolution. 2) The control of plasmon-mediated growth of PNPs with nanoscale spatial selectivity. Determination of the role of hot carriers in these reactions. 3) Study, design and optimization of hybrid bimetallic plasmonic-catalytic NPs with applications in energy conversion.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLASMONIC REACTOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLASMONIC REACTOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More