Opendata, web and dolomites

AMACONOE SIGNED

Advanced modelling and control of nitrous oxide emissions from wastewater treatment plants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "AMACONOE" data sheet

The following table provides information about the project.

Coordinator
DANMARKS TEKNISKE UNIVERSITET 

Organization address
address: ANKER ENGELUNDSVEJ 1 BYGNING 101 A
city: KGS LYNGBY
postcode: 2800
website: www.dtu.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) coordinator 200˙194.00

Map

 Project objective

The production and emissions of nitrous oxide (N2O) significantly increase the carbon footprint of wastewater treatment plants (WWTPs). Currently, the development of technological solutions to decrease N2O emissions is impaired, due to the lack of a solid fundamental understanding of the rather complex N2O production pathways. Moreover, a reliable simulation tool capable of accurately predicting N2O emissions is not available to generate and test novel ideas and customized solutions for WWTPs to mitigate carbon footprint. This project aims to develop a unified N2O model capable of predicting the multiple N2O production pathways using statistically-analysed full-scale data from a database consolidated in this project. The unified N2O model will then be incorporated to issue a new plant-wide model of high fidelity, which will be implemented to optimize plant design for minimum carbon footprint. By applying advanced control technologies in the plant-wide model, a variety of carbon footprint mitigation strategies will be generated and tested for WWTPs of different process configurations under varied operating conditions. The model-based control strategies will be implemented at full scale to evaluate their applicability to directing the operation of real WWTPs. Equipped with strong expertise in modelling biological wastewater treatment processes and N2O production mechanisms, I will broaden my knowledge and skill base in model-based control and optimization of full-scale wastewater treatment processes by carrying out this project. By means of inter-sectoral secondments, I will be provided with valuable chances to receive trainings from Lund University in plant-wide modelling, benchmarking, control and automation, and Unisense in full-scale data collection, testing of model-based control strategies and direct engagement with water utilities. Through this project, my competences and potential of becoming a mature and independent researcher will be significantly enhanced.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AMACONOE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AMACONOE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More