Opendata, web and dolomites

HyPoStruct SIGNED

A key breakthrough in hydrogen fuel cells: enhancing macroscopic mass transport properties by tailoring the porous microstructure

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HyPoStruct" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 173˙857 €
 EC max contribution 173˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-01-09   to  2021-01-08

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 173˙857.00

Map

 Project objective

Given their high conversion efficiency and zero-emission characteristics, hydrogen fuel cells are extremely attractive for replacing current energy conversion and power generation technologies. Nevertheless, they still need significant technological improvements in order to increase their competitiveness in the mobility and energy conversion market. More to the point, nowadays, the increase of the effective gas-liquid mass transport in the porous electrodes is highly demanded to improve cell performances. The present proposal aims to investigate and improve the transport properties of two phase flows in hydrogen fuel cells porous materials with an innovative bottom-up approach: tailoring the porous microstructure in order to achieve the desired macroscopic feature, i.e. enhancing liquid water removal and promoting gas transport. The pore geometrical microscopic features (size, form, anisotropic structure) and the chemical behaviour of the pores surface (hydro -philic-phobic features) will be tuned and their effect on water imbibition, drainage and spatial and temporal distribution will be investigated by means of numerical simulations. An advancement in fuel cells technology is expected by characterising the optimal design of the porous electrodes which will significantly increase cells performances and open up a route for a new generation of fuel cells.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYPOSTRUCT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYPOSTRUCT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More