Explore the words cloud of the STELLAR project. It provides you a very rough idea of what is the project "STELLAR" about.
The following table provides information about the project.
Coordinator |
UNIVERSITE DE STRASBOURG
Organization address contact info |
Coordinator Country | France [FR] |
Total cost | 173˙076 € |
EC max contribution | 173˙076 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2018 |
Duration (year-month-day) | from 2018-12-01 to 2020-11-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITE DE STRASBOURG | FR (STRASBOURG) | coordinator | 173˙076.00 |
STELLAR will offer world-class training through research in the cross-disciplinary and supra-sectorial field of 2D transition metal dichalcogenides (TMDCs)-based multiresponsive optoelectronics to an extremely talented and promising young researcher, with a PhD in physics and an extraordinary track record. The proposed research lies at the interface between physics, chemistry and electrical engineering, in the interdisciplinary realms of supramolecular sciences, materials science and nanoscience. The overall mission is to train the fellow to become an independent scientist and to prepare him for a leading position in academia/public sector or industry. The research programme in STELLAR targets a fundamental breakthrough in the field of 2D TMDCs by combining switchable molecular systems to construct multiresponsive hybrid molecules/TMDC structures and optoelectronic devices. For this purpose, TMDC nanosheets will be engineered via ion bombardment to create chalcogen vacancies as anchoring sites for molecules. Specially designed molecules with multiple responsive moieties (photochromic and electrochemically switchable moieties) and suitable head groups (thiol or selenol groups) will be chemisorbed on the defective TMDC surface. This novel hybrid system can respond to multiple independent external stimuli and exhibit distinct physical and chemical properties in different stable states. Electrolyte-gated field-effect transistors (FETs) with a hybrid molecules/TMDC channel will be exploited to realize multiresponsive optoelectronic devices. These FETs can be controlled or switched not only by gate voltage, but also by multiple external stimuli. Such smart devices can work as multi-bit memories, chemical sensors and diodes. In conclusion, STELLAR aims at developing high-performance multiresponsive optoelectronic devices with hybrid molecules/TMDC systems to replace the state-of-the-art Si-based and organic electronic devices.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
Yuda Zhao, Simone Bertolazzi, Paolo Samorì A Universal Approach toward Light-Responsive Two-Dimensional Electronics: Chemically Tailored Hybrid van der Waals Heterostructures published pages: 4814-4825, ISSN: 1936-0851, DOI: 10.1021/acsnano.9b01716 |
ACS Nano 13/4 | 2019-05-15 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STELLAR" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "STELLAR" are provided by the European Opendata Portal: CORDIS opendata.