Explore the words cloud of the JUMP project. It provides you a very rough idea of what is the project "JUMP" about.
The following table provides information about the project.
Coordinator |
UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Organization address contact info |
Coordinator Country | Italy [IT] |
Total cost | 168˙277 € |
EC max contribution | 168˙277 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2018 |
Duration (year-month-day) | from 2018-11-01 to 2020-10-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA | IT (ROMA) | coordinator | 168˙277.00 |
The exploration of the Jovian system is a priority for present (Juno NASA’s mission) and upcoming (Juice ESA’s mission) spacecraft missions. This research project focuses on Jupiter’s internal dynamics. This is crucial as it sets the whole planetary environment, including the giant magnetosphere. Unfortunately, despite being the nearest gas planet from Earth, the internal dynamics of Jupiter is poorly constrained from present observations. However, Jupiter's observable zonal winds constitute privileged markers directly connected to the underlying dynamics. They are powerful jets that channel more than 90% of the total kinetic energy observed on the planetary surface. Nevertheless, how these jets interact with planetary interiors? remains a fundamental question that the fellow will address during the fellowship. As of now, two dominant models are continuously challenged: the shallow layer model, where jets confine within a thin layer, and a deep model, where jets extend down to the entire molecular envelope. Recently, the fellow published the first successful lab experiment to reproduce jets and consequently restored the deep model that was so-far disqualified from previous studies. Now, taking advantage of this privileged position, the fellow designed “JUMP”: the JUpiter Modeling Platform. JUMP is a mixed laboratory-numerical platform that is capable of generating jet-like flows in a continuum of planetary configurations from shallow to deep atmospheres. It combines an advanced laboratory challenge that requires the strong engineering expertise of the host and associated numerical skills which is well into the specific abilities of the fellow. Using a package of statistical tools the fellow will describe flow properties in such a manner that results are directly comparable with previous works on Jupiter high resolution images. The ultimate challenge of JUMP is to identify markers in flow properties that will distinguish between deep and shallow scenarios on Jupiter.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "JUMP" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "JUMP" are provided by the European Opendata Portal: CORDIS opendata.