Opendata, web and dolomites

MECHEMGUI SIGNED

The integration of mechanical and chemical signals in neuronal guidance

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MECHEMGUI project word cloud

Explore the words cloud of the MECHEMGUI project. It provides you a very rough idea of what is the project "MECHEMGUI" about.

signals    stiffness    environment    proper    chemical    missing    paths    cues    brain    mechanisms    arrangements    puzzle    biology    indirectly    shed    re    signaling    pathfinding    cellular    damaged    complete    combining    integrate    unknown    dynamics    ultimately    story    crowded    inducing    guide    regeneration    efficient    vivo    local    mechanical    requested    axons    engineering    activated    regulate    cytoskeletal    suggesting    patterns    outgrowth    time    physics    gap    commitments    comprehension    mechanosensitive    neuronal    mechanotransduction    date    mechanically    molecular    framework    isa    distant    nervous    attractive    axonal    breakthrough    during    signalling    cascades    cns    axon    predict    motility    biomedical    start    computational    evident    2018    discovery    extend    close    predictive    poorly    guidance    first    put    vitro    june    1st    modulating    light    pi    biochemical    developmental    model    repulsive    neurons    central    alterations    modulate    place    tissue   

Project "MECHEMGUI" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙468˙520 €
 EC max contribution 2˙468˙520 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2023-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 2˙468˙520.00

Map

 Project objective

During the development of the central nervous system (CNS), neurons extend axons through a crowded environment along well-defined pathways to reach their distant targets. It isA start date of 1st June 2018 is being requested to enable the PI to complete a number of current commitments and put the necessary arrangements in place to enable an efficient start up phase of the project. evident that attractive and repulsive guidance cues in the tissue provide important biochemical signals to guide growing axons along their paths. This can only be part of the story, however, as it is still not possible to predict axonal growth patterns in vivo. In a recent breakthrough discovery, we provided in vivo evidence that neurons also respond to mechanical cues, such as local tissue stiffness, suggesting that mechanical signals are likely an important missing part of the puzzle. However, mechanically activated signaling pathways are currently poorly understood, and how neurons integrate mechanical and chemical signals to result in proper outgrowth is unknown.

By investigating how mechanical signals control neuronal growth and pathfinding, this proposal will close this comprehension gap. By combining state-of-the-art approaches in physics, engineering and biology, we will, for the first time, identify mechanosensitive molecular mechanisms that regulate neuronal growth and guidance in vitro and in vivo. In particular, we will investigate how mechanotransduction cascades (1) directly modulate axon growth by inducing local changes in cytoskeletal dynamics, and (2) indirectly lead to alterations in axon outgrowth by modulating chemical signalling pathways. Ultimately, we will develop a computational model based on our findings, which will lead to a predictive framework for understanding axon pathfinding in the developing brain.

The proposed research challenges current concepts in developmental biology and is very relevant to many other areas in biology. Our results will not only shed new light on the complex control mechanisms of cellular growth and motility, but could also lead to novel biomedical approaches aimed at facilitating neuronal re-growth and regeneration in the damaged CNS.

 Publications

year authors and title journal last update
List of publications.
2019 Yassen Abbas, Alejandro Carnicer-Lombarte, Lucy Gardner, Jake Thomas, Jan J Brosens, Ashley Moffett, Andrew M Sharkey, Kristian Franze, Graham J Burton, Michelle L Oyen
Tissue stiffness at the human maternal–fetal interface
published pages: 1999-2008, ISSN: 0268-1161, DOI: 10.1093/humrep/dez139
Human Reproduction 34/10 2020-02-05
2019 Maximilian AH Jakobs, Andrea Dimitracopoulos, Kristian Franze
KymoButler, a deep learning software for automated kymograph analysis
published pages: , ISSN: 2050-084X, DOI: 10.7554/elife.42288
eLife 8 2020-02-05
2019 Michael Segel, Björn Neumann, Myfanwy F. E. Hill, Isabell P. Weber, Carlo Viscomi, Chao Zhao, Adam Young, Chibeza C. Agley, Amelia J. Thompson, Ginez A. Gonzalez, Amar Sharma, Staffan Holmqvist, David H. Rowitch, Kristian Franze, Robin J. M. Franklin, Kevin J. Chalut
Niche stiffness underlies the ageing of central nervous system progenitor cells
published pages: 130-134, ISSN: 0028-0836, DOI: 10.1038/s41586-019-1484-9
Nature 573/7772 2020-02-05
2019 Amelia J Thompson, Eva K Pillai, Ivan B Dimov, Sarah K Foster, Christine E Holt, Kristian Franze
Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain
published pages: , ISSN: 2050-084X, DOI: 10.7554/elife.39356
eLife 8 2020-01-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECHEMGUI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MECHEMGUI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

PATHOCODE (2020)

Molecular pathology of anti-viral T cell responses in the central nervous system

Read More  

TechChange (2019)

Technological Change: New Sources, Consequences, and Impact Mitigation

Read More