Opendata, web and dolomites

G-Statistics SIGNED

Foundations of Geometric Statistics and Their Application in the Life Sciences

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 G-Statistics project word cloud

Explore the words cloud of the G-Statistics project. It provides you a very rough idea of what is the project "G-Statistics" about.

approximate    structures    tools    metric    inventing    diverges    anatomical    shapes    manifolds    principled    estimate    specializations    quotient    life    emphasis    put    ways    connection    transformation    linear    negatively    riemannian    structure    subspaces    appear    data    efficient    spaces    statistical    computational    databases    anatomy    groups    mathematical    explaining    provides    sciences    images    crossing    true    lie    flags    foundations    algorithms    theorems    curved    gauge    stratified    euclidean    effectiveness    mathematics    laws    naturally    natural    physics    establishing    estimation    exemplifying    medical    theories    geometric    curvature    geometry    encode    requiring    dimension    poincar    power    mainly    estimations    hierarchically    illustrate    rephrasing    radically    illustrating    arise    discipline    unify    affine    invariance    eacute    surveying    evolution    methodology    singularities    approximation    stratification    unreasonable    forecasting    statistics    object    explore    convenient    statisticians   

Project "G-Statistics" data sheet

The following table provides information about the project.

Coordinator
INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE 

Organization address
address: DOMAINE DE VOLUCEAU ROCQUENCOURT
city: LE CHESNAY CEDEX
postcode: 78153
website: www.inria.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙183˙583 €
 EC max contribution 2˙183˙583 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE FR (LE CHESNAY CEDEX) coordinator 2˙183˙583.00

Map

 Project objective

'Invariance under gauge transformation groups provides the natural structure explaining the laws of physics. In life sciences, new mathematical tools are needed to estimate approximate invariance and establish general but approximate laws. Rephrasing Poincaré: a geometry cannot be more true than another, it may just be more convenient, and statisticians must find the most convenient one for their data. At the crossing of geometry and statistics, G-Statistics aims at establishing the mathematical foundations of geometric statistics and exemplifying their impact on selected applications in the life sciences.

So far, mainly Riemannian manifolds and negatively curved metric spaces have been studied. Other geometric structures like quotient spaces, stratified spaces or affine connection spaces naturally arise in applications. G-Statistics will explore ways to unify statistical estimation theories, explaining how the statistical estimations diverges from the Euclidean case in the presence of curvature, singularities, stratification. Beyond classical manifolds, particular emphasis will be put on flags of subspaces in manifolds as they appear to be natural mathematical object to encode hierarchically embedded approximation spaces.

In order to establish geometric statistics as an effective discipline, G-Statistics will propose new mathematical structures and theorems to characterize their properties. It will also implement novel generic algorithms and illustrate the impact of some of their efficient specializations on selected applications in life sciences. Surveying the manifolds of anatomical shapes and forecasting their evolution from databases of medical images is a key problem in computational anatomy requiring dimension reduction in non-linear spaces and Lie groups. By inventing radically new principled estimations methods, we aim at illustrating the power of the methodology and strengthening the 'unreasonable effectiveness of mathematics' for life sciences.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "G-STATISTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "G-STATISTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MiniEmbryoBlueprint (2019)

The mammalian body plan blueprint, an in vitro approach

Read More  

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

CountIce (2020)

A portable instrument (PINE) for the autonomous detection of atmospheric ice nucleating particles aimed at the research, global monitoring and cloud seeding markets

Read More