Opendata, web and dolomites

MiniEmbryoBlueprint SIGNED

The mammalian body plan blueprint, an in vitro approach

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MiniEmbryoBlueprint" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙480˙300 €
 EC max contribution 2˙480˙300 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2024-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 2˙480˙300.00

Map

 Project objective

The development of an embryo requires the spatially structured emergence of tissues and organs. This process relies on the early establishment of a coordinate system in the form of three orthogonal axes that act as a reference for laying down the body plan, a template for the organism. Genetic analysis of this process has revealed an underlying transcriptional blueprint that links the coordinate system and the body plan. However, the way in which the gene products contribute to the emergence of the body plan remains an open question. A reason for this is that this process involves feedbacks and integration between the activity of Gene Regulatory Networks (GRNs) and the mechanics of multicellular ensembles, and that probing this relationship is experimentally challenging. In the case of mammalian embryos, which are particularly important as models for human development, our gaps in knowledge of these events are larger than in other organisms. This is partly due to the challenges associated with uterine development but also, and increasingly, because of the cost of mice and the difficulty of obtaining large numbers of embryos, as required for mechanistic experiments. In this project we shall use gastruloids, a novel and versatile Pluripotent Stem Cells based experimental system that we have developed for the study of mammalian development, to gain insights into the molecular and cellular basis underlying the emergence of the mammalian body plan. Gastruloids lack anterior neural structures and over a period of five days become organized in the fashion of a midgestation mouse embryo. We shall use the experimental versatility of the Gastruloid system to probe into the functional relationships between the mechanical activities of multicellular ensembles and the dynamics of GRNs that underlie the emergence of the mammalian body plan.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MINIEMBRYOBLUEPRINT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MINIEMBRYOBLUEPRINT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More  

iNANOVAC4CANCER (2019)

BIOHYBRID AND BIODEGRADABLE NANOVACCINES FOR CANCER IMMUNOTHERAPY

Read More