Opendata, web and dolomites

SYNMAT SIGNED

Synthesis of Functional Multi-Component Supramolecular Systems and Materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SYNMAT project word cloud

Explore the words cloud of the SYNMAT project. It provides you a very rough idea of what is the project "SYNMAT" about.

assembly    functional    procedure    preparing    culminate    kinetics    asymmetrically    introduce    pitch    chemistry    characterization    network    blocks    explore    reversible    hydrogel    tacticity    modified    complexity    latter    block    tools    hence    space    stem    similarities    structures    first    final    synthetic    quartets    lifelike    strategies    co    arrangement    self    molecules    arrive    expressed    special    materials    organoid    synthesizing    mimic    artificial    extracellular    surfaces    chemists    synthesize    cell    connected    fashion    unexplored    discrete    functions    spin    organic    polymer    structure    chiral    selective    matrix    molecular    covalent    diameter    oligomers    technologies    chirality    supramolecular    changer    hard    polymerization    game    nature    building    synthesis    polymers    inspiration    section    receptors    possess    erc    takes    architectures    organization    focusses    imagine    foreseen    impressive    insights    double    progress    dynamic    recruit    unprecedented   

Project "SYNMAT" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT EINDHOVEN 

Organization address
address: GROENE LOPER 3
city: EINDHOVEN
postcode: 5612 AE
website: www.tue.nl/en

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 2˙499˙929 €
 EC max contribution 2˙499˙929 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT EINDHOVEN NL (EINDHOVEN) coordinator 2˙499˙929.00

Map

 Project objective

This ERC proposal targets novel synthetic strategies to arrive at functional multi-component systems and materials. They possess architectures of such high complexity that it is hard to imagine access to these systems by self-assembly or self-organization only. We will explore tools required to introduce multi-step non-covalent synthesis. We have taken inspiration from Nature, but more importantly we propose to mimic the impressive progress in the field of covalent organic and polymer synthesis. Three connected approaches are defined: The first section focusses on supramolecular polymers and how their polymerization can be compared to that of traditional covalent polymerization; unprecedented similarities are foreseen. Unexplored areas like controlled co-polymerization and achieving “tacticity” in asymmetrically modified building blocks are proposed, with special attention to kinetics and structure characterization. The second section is aiming at synthesizing a multi-component hydrogel leading to a system that is able to recruit receptors in a dynamic and reversible fashion. This work is proposed to culminate in new insights for preparing an artificial extracellular matrix for stem cell to organoid growth. The latter is proposed using a double supramolecular network. The final section takes inspiration from the recent finding that chirality can control spin-selective chemistry. Novel chiral structures with control over pitch and diameter are proposed by two-step synthetic processes. In a three-step non-covalent synthetic procedure, a space-controlled arrangement of chiral quartets on surfaces is proposed using discrete block co-oligomers. Since molecules only have structures and properties, their functions can only be expressed when they are part of complex molecular systems. Hence, if chemists want to synthesize functions in lifelike materials, they have to introduce new approaches and technologies, a game changer is proposed in this ERC proposal.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNMAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNMAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

E-DURA (2018)

Commercialization of novel soft neural interfaces

Read More  

NEUTRAMENTH (2018)

A redox-neutral process for the cost-efficient and environmentally friendly production of Menthol

Read More