Opendata, web and dolomites

BioGraphING SIGNED

Biomolecule Sensing with Graphene-Integrated Nanogaps

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BioGraphING project word cloud

Explore the words cloud of the BioGraphING project. It provides you a very rough idea of what is the project "BioGraphING" about.

fingerprints    free    architecture    room    size    situ    nanoscopic    anchoring    acids    quantum    final    origins    voltage    inside    biographing    transport    contact    amino    protein    degree    distance    graphene    charge    fingerprinting    function    junction    spaced    exert    simulations    biomolecule    vacuum    modulations    structure    discriminate    mcbjs    functions    environment    individual    closely    bias    temperature    composition    mechanically    biological    atomic    liquid    label    break    electrode    pi    superior    peptides    monitor    tunnelling    picometer    molecules    diseases    plane    electronics    stability    device    bonding    resolution    mcbj    stacking    ideal    offers    model    electrodes    modes    gap    air    molecule    bonds    combined    statistical    first    trapping    conductance    platform    inertness    mechanical    chemical    caused    dna    electronic    covalent    sensing    sensitive    species    cells    single    thinness    monitoring    biophysics    biomolacular    arrangement    data    molecular    junctions   

Project "BioGraphING" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 165˙598.00

Map

 Project objective

Monitoring the DNA and protein composition of cells is key to understanding most biological processes, including the molecular origins of specific diseases. To this end, the emerging field of molecular electronics offers unique opportunities for label-free single-biomolecule sensing. In particular, tunnelling current modulations caused by trapping an individual molecule in a nanoscopic gap between two electrodes can be used to discriminate species based on their electronic structure. The junction conductance is highly sensitive not only to the structure of the molecule, but also to the gap size, the voltage applied, the bonding arrangement inside the gap and the immediate molecular environment. Mechanically controlled break junctions (MCBJs) that allow the formation of closely-spaced electrodes with picometer resolution, can exert a degree of control over each of these parameters and therefore represent an ideal platform for in-situ studies at single-molecule level.

In BioGraphING, I will develop the first graphene MCBJ, a unique device that will be both a model system for studying charge transport in molecular junctions at room temperature, and a sensing platform for biomolacular fingerprinting. Graphene’s atomic thinness, chemical inertness and strong in-plane bonds will lead to a device architecture with superior mechanical stability and measurement resolution. Given that a robust and reliable contact to single molecules is crucial for high junction conductance, various anchoring modes of the molecules to the graphene electrodes will be investigated (e.g. covalent bonding, π-π stacking). I will monitor the molecular conductance as a function of electrode distance and bias voltage in air, vacuum and in liquid. Combined with quantum transport simulations and statistical data analysis my final goal is to establish molecular fingerprints for amino acids and peptides with specific biological functions, an important challenge in single-molecule biophysics.

 Publications

year authors and title journal last update
List of publications.
2018 Valentin Dubois, Shyamprasad N. Raja, Pascal Gehring, Sabina Caneva, Herre S. J. van der Zant, Frank Niklaus, Göran Stemme
Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-05785-2
Nature Communications 9/1 2020-03-23
2018 Sabina Caneva, Pascal Gehring, Víctor M. García-Suárez, Amador García-Fuente, Davide Stefani, Ignacio J. Olavarria-Contreras, Jaime Ferrer, Cees Dekker, Herre S. J. van der Zant
Mechanically controlled quantum interference in graphene break junctions
published pages: 1126-1131, ISSN: 1748-3387, DOI: 10.1038/s41565-018-0258-0
Nature Nanotechnology 13/12 2020-03-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOGRAPHING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOGRAPHING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Mel.Photo.Protect (2019)

Unraveling the Photoprotecting Mechanism of Melanin - From a Library of Fragments to Simulation of Spectra and Function

Read More  

ReSOLeS (2019)

New Reconfigurable Spectrum Optical Fibre Laser Sources

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More