Opendata, web and dolomites

SiMS SIGNED

Simulated Majorana states

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SiMS" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 1˙997˙513 €
 EC max contribution 1˙997˙513 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 1˙926˙263.00
2    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) participant 71˙250.00

Map

 Project objective

Quantum computation using topologically protected Majorana bound states is a promising direction towards scalable quantum architectures due to their inherent noise immunity provided by the nonlocal storage of quantum information. Thus far, Majorana states have mostly been investigated in superconductor-semiconductor heterostructures which rely on induced superconductivity in a quasi-one-dimensional conductor. However, despite tremendous efforts in material development, these devices are still limited by uncontrolled local fluctuations due to disorder and it is unclear if future developments will solve these problems. Furthermore, disorder may even mimic the transport signatures of topological ordering, hindering an unambiguous identification of the Majorana states. Here I propose a way to overcome these limitations: I will work towards the direct quantum simulation of the one dimensional topological superconductor with Majorana bound states. I will use chains of semiconductor quantum dots, which is an emerging platform to simulate exotic many-body electron states. Building on this platform, I will be able to demonstrate for the first time the emergence of coherent, non-local superconducting states bound to the entire device similarly to the Kitaev chain model of topological superconductivity. To demonstrate quantum coherence of the chain, we will build the first Andreev molecule quantum bit, which, while not topologically protected, will already combine advantages of superconducting and semiconductor qubits. Going one step further, we will investigate the simulated Kitaev chain. Upon establishing the presence of the simulated Majorana states, we will work towards a simple braiding protocol to demonstrate the non-Abelian nature of the edge modes. This research direction, combining the scalability of semiconductor structures and the topological protection of Majorana states, will open new avenues towards universal quantum computation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SIMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SIMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More  

DDREAMM (2020)

Dna Damage REsponse: Actionabilities, Maps and Mechanisms

Read More