Opendata, web and dolomites

FUNGRAPH SIGNED

A New Foundation for Computer Graphics with Inherent Uncertainty

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FUNGRAPH project word cloud

Explore the words cloud of the FUNGRAPH project. It provides you a very rough idea of what is the project "FUNGRAPH" about.

components    accurate    realistic    estimation    disparate    propagation    tradeoffs    benefit    expanding    display    image    incomplete    previously    deep    rendering    overcome    introduces    revisit    captured    spectacular    accuracy    learning    incompatible    unified    virtual    constantly    treatment    manually    uncertain    augmented    complementary    principled    limitations    builds    fast    machine    quality    ibr    expensive    cg    environments    speed    guarantee    create    content    data    error    extensive    reconstruction    quantification    bayesian    capture    single    renderings    input    designed    quantifying    flexibility    inaccurate    renderer    synthetic    algorithm    foundations    approximate    generation    demands    algorithms    proposing    lacks    modify    truth    methodology    photos    simulation    satisfy    domain    fungraph    fundamentally    ground    graphics    scene    wealth    computer    introducing    transform    ultimate    interactive    requiring    advantages   

Project "FUNGRAPH" data sheet

The following table provides information about the project.

Coordinator
INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE 

Organization address
address: DOMAINE DE VOLUCEAU ROCQUENCOURT
city: LE CHESNAY CEDEX
postcode: 78153
website: www.inria.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙497˙161 €
 EC max contribution 2˙497˙161 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE FR (LE CHESNAY CEDEX) coordinator 2˙497˙161.00

Map

 Project objective

The use of Computer Graphics (CG) is constantly expanding, e.g., in Virtual and Augmented Reality, requiring realistic interactive renderings of complex virtual environments at a much wider scale than available today. CG has many limitations we must overcome to satisfy these demands. High-quality accurate rendering needs expensive simulation, while fast approximate rendering algorithms have no guarantee on accuracy; both need manually-designed expensive-to-create content. Capture (e.g., reconstruction from photos) can provide content, but it is uncertain (i.e., inaccurate and incomplete). Image-based rendering (IBR) can display such content, but lacks flexibility to modify the scene. These different rendering algorithms have incompatible but complementary tradeoffs in quality, speed and flexibility; they cannot currently be used together, and only IBR can directly use captured content. To address these problems FunGraph will revisit the foundations of Computer Graphics, so these disparate methods can be used together, introducing the treatment of uncertainty to achieve this goal. FunGraph introduces estimation of rendering uncertainty, quantifying the expected error of rendering components, and propagation of input uncertainty of captured content to the renderer. The ultimate goal is to define a unified renderer exploiting the advantages of each approach in a single algorithm. Our methodology builds on the use of extensive synthetic (and captured) “ground truth” data, the domain of Uncertainty Quantification adapted to our problems and recent advances in machine learning – Bayesian Deep Learning in particular. FunGraph will fundamentally transform computer graphics, and rendering in particular, by proposing a principled methodology based on uncertainty to develop a new generation of algorithms that fully exploit the spectacular (but previously incompatible) advances in rendering, and fully benefit from the wealth offered by constantly improving captured content.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUNGRAPH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUNGRAPH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More