Explore the words cloud of the Mito-recombine project. It provides you a very rough idea of what is the project "Mito-recombine" about.
The following table provides information about the project.
Coordinator |
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 1˙473˙732 € |
EC max contribution | 1˙473˙732 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-03-01 to 2024-02-29 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE | UK (CAMBRIDGE) | coordinator | 1˙473˙732.00 |
Mitochondrial DNA (mtDNA) is a multi-copy genome that works with the nuclear genome to control energy production and various cellular processes. To date, disorders associated with mutations in mtDNA are among the most common genetically inherited metabolic diseases1. However, our knowledge regarding many aspects of mtDNA biology remains limited, and we know even less about how it influences development and organismal traits. This is largely due to our inability to manipulate mtDNA. Recently, a colleague and I developed novel genetic tools in Drosophila that allowed us to isolate animal mitochondrial mutants for the first time, and to create heteroplasmic organisms containing two mitochondrial genotypes2,3. These advances make Drosophila a powerful system for mtDNA studies. Importantly, I showed that Drosophila mtDNA could undergo homologous recombination. Furthermore, I established a system to induce recombination at specific sites and select for progeny containing only the recombinant genome4. Thus, my work has demonstrated the existence of recombination in animal mitochondria, and opens up the possibility of developing a recombination system for functional mapping and manipulating animal mtDNA. Here I propose to 1) identify components of the mitochondrial recombination machinery by a candidate RNAi screen; 2) develop a recombination toolkit to map trait-associated mtDNA sequences/SNPs; and 3) build a site-directed mutagenesis system by establishing robust ways to deliver DNA into fly mitochondria. Given the essential functions of mitochondria and their involvement in incurable diseases, the genetic tools developed in this proposal will transform the field by making it possible to link mtDNA variations to phenotypic differences and introduce specific mutations into mtDNA for functional studies at organismal level. These advances will open many possibilities to accelerate our understanding on how mtDNA impacts health, disease and evolution.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MITO-RECOMBINE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MITO-RECOMBINE" are provided by the European Opendata Portal: CORDIS opendata.