Explore the words cloud of the MechanoSignaling project. It provides you a very rough idea of what is the project "MechanoSignaling" about.
The following table provides information about the project.
Coordinator |
TECHNISCHE UNIVERSITEIT EINDHOVEN
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 1˙498˙526 € |
EC max contribution | 1˙498˙526 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-01-01 to 2023-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | TECHNISCHE UNIVERSITEIT EINDHOVEN | NL (EINDHOVEN) | coordinator | 1˙498˙526.00 |
The key challenge in regenerative medicine is to re-establish a physiological tissue organization as this is conditional for proper tissue functionality. In the cardiovascular field, tissue engineering of blood vessels and heart valves requires the development of a tri-laminar structure. Previous attempts to establish this organization have been mainly trial-and-error based. Therefore, to force breakthroughs and accelerate clinical translation, computational modeling is critical to understand and predict the process of neo-tissue regeneration starting from non-living biodegradable materials (i.e. scaffolds). The main drivers of regeneration are (1) hemodynamic loads that trigger mechanically-driven tissue growth and remodeling, and (2) signaling interactions between cells that control the emergence of global tissue organization (e.g. layering of vessels and valves). While the first aspect currently receives vast attention, the modeling of cell signaling in the context of tissue engineering remains an unexplored area. In this project, I aim to obtain a mechanistic understanding of how a critical pathway in the cardiovascular system, i.e. the Notch signaling pathway, drives the emergence of global tissue organization while interacting with mechanical cues. I will adopt a unique, multi-disciplinary approach, where quantitative in vitro experiments will be performed to inform novel multi-scale computational models of Notch signaling and its consequences on regeneration. I will leverage these models to understand and predict in vivo regeneration of engineered cardiovascular tissues starting from various initial conditions. If successful, this project will have a tremendous impact on the development of rational guidelines for ensuring functional tissue regeneration, which represents a breakthrough towards creating cardiovascular replacements that are superior to current treatment options. Moreover, it enables me to start my own independent research group in this field.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECHANOSIGNALING" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MECHANOSIGNALING" are provided by the European Opendata Portal: CORDIS opendata.