Opendata, web and dolomites

MesuR SIGNED

Metric-measure inequalities in sub-Riemannian manifolds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MesuR project word cloud

Explore the words cloud of the MesuR project. It provides you a very rough idea of what is the project "MesuR" about.

allowed    stochastic    geometric    sub    arising    inequalities    innovative    underlying    functional    original    solutions    estimates    space    spaces    stg    donne    point    techniques    deepen    relations    conjecture    confinement    le    self    singularities    geometry    supervisor    encoding    class    operators    geomeg    2016    theoretic    region    received    2010    interaction    endowed    boscain    erc    isoperimetric    2017    kernel    usually    generalizations    pansu    prove    follow    mesur    employed    action    smooth    particles    impulse    gecomethods    manifolds    frame    expansion    laplacian    naturally    obtain    variational    hypoelliptic    thanks    literature    view    respectively    backgrounds    framework    dynamical    singular    novelty    riemannian    theory    metric    quantum    heat    completeness    shape    pi    context    conjectured    suitable    presenting    heisenberg    dynamics    equation    sr    adjointness    informations    opposite    group    intrinsic    qualitative    amounting    proving   

Project "MesuR" data sheet

The following table provides information about the project.

Coordinator
SORBONNE UNIVERSITE 

Organization address
address: 21 RUE DE L'ECOLE DE MEDECINE
city: PARIS
postcode: 75006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 173˙076 €
 EC max contribution 173˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SORBONNE UNIVERSITE FR (PARIS) coordinator 173˙076.00

Map

 Project objective

The goal of MesuR is to deepen our knowledge of geometric and dynamical properties of a class of metric-measure spaces, called sub-Riemannian (sR) manifolds. These are generalizations of Riemannian manifolds, naturally arising in the frame of control theory and hypoelliptic operators. SR geometry is a theory in expansion, and it recently received a great impulse thanks to two ERC-StG on this topic: “GeCoMethods” (2010-2016, PI: U. Boscain), and “GeoMeG” (2017–now, PI: E. Le Donne). In this action we focus on sR manifolds endowed with intrinsic measures. These have been introduced in the frame of geometric control theory: as a key novelty, they are allowed here to have singularities, opposite to the smooth measures usually employed in the existing literature on geometry and analysis in sR manifolds. In this framework, we aim at proving: (1) sR isoperimetric inequalities for singular measures, and investigate relations with the standing Pansu’s conjecture about the shape of isoperimetric sets in the Heisenberg group; (2) Essential self-adjointness and stochastic completeness of the intrinsic sR Laplacian, amounting to prove the conjectured confinement of the heat and of quantum particles to the non-singular region; (3) Heat kernel estimates, i.e., qualitative informations on the solutions to the Heat equation for the intrinsic sR Laplacian. Our objectives will follow by proving suitable functional inequalities encoding geometric properties of the underlying space, that we call metric-measure inequalities. This will be done thanks to an original interaction between variational and control theoretic techniques, respectively typical of the backgrounds of the applicant and of the Supervisor. Through this innovative point of view, we will obtain new results in the context of sR geometry and provide new techniques to study geometry and dynamics on metric-measure spaces presenting singularities.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MESUR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MESUR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More  

ROSETTA (2020)

Deciphering the Role of aberrant glycOSylation in the rEsponse to Targeted TherApies for breast cancer

Read More  

POLINGO (2018)

The Politics of Legitimacy: Non-partisan global governance and networked INGO power in the global governance of post-war states

Read More