Explore the words cloud of the OXYGEN SENSING project. It provides you a very rough idea of what is the project "OXYGEN SENSING" about.
The following table provides information about the project.
Coordinator |
UMEA UNIVERSITET
Organization address contact info |
Coordinator Country | Sweden [SE] |
Total cost | 1˙485˙000 € |
EC max contribution | 1˙485˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-01-01 to 2023-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UMEA UNIVERSITET | SE (UMEA) | coordinator | 1˙485˙000.00 |
Oxygen (O2) levels can vary enormously in the environment, which induces dramatic behavioral and physiological changes to resident animals. Adaptations to O2 variations can be either acute or sustained. How animals detect and respond to the changes of O2 availability remains elusive at the molecular level. In particular, what is the precise mechanism of acute O2 sensing, what are the primary sensor for acute hypoxia, and why do neurons of various species exhibit completely different sensitivity to hypoxic challenges? The research proposed here aims at addressing these intriguing but challenging questions in the model system nematode C. elegans, which offers unique advantages to systematically dissect O2 sensing at both genetic and neural circuit levels. C. elegans responds dramatically to acute O2 variations by altering its locomotory speed. We will make use of this robust behavioral response to O2 stimulation for high-throughput genetic screens, aiming to identify a collection of molecules critical for acute O2 sensing. These molecules will be subsequently characterized in the context of a well-described nervous system of C. elegans. Our findings will offer the opportunity to shed light on conserved principles of acute O2 sensing that are operating in the O2 sensing systems in humans such as carotid body. In addition to its robust responses to O2 variation, C. elegans exhibits remarkable tolerance to a complete lack of O2, anoxic exposure. My team will thoroughly investigate anoxia tolerance of C. elegans by performing a screen for anoxia-sensitive mutants that has previously been challenging. The discoveries will allow us to delineate the molecular underpinning of anoxia tolerance in C. elegans, and to inspire other researchers to develop better strategies to cope with hypoxic challenges caused by certain diseases such as stroke and ischemia, which are the most causes of human deaths in developed countries.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OXYGEN SENSING" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "OXYGEN SENSING" are provided by the European Opendata Portal: CORDIS opendata.
A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans
Read MoreUnderstanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell
Read MoreJust because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life
Read More