Opendata, web and dolomites

SCIPER SIGNED

Studying Cancer Individuality by Personal and Predictive Drug Screening and Differential OMICs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SCIPER project word cloud

Explore the words cloud of the SCIPER project. It provides you a very rough idea of what is the project "SCIPER" about.

microscopy    ineffective    healthcare    confocal    inference    individual    learning    interventional    clinical    govern    convolutional    computational    precision    phenotypic    integration    machine    preserve    cancer    patients    sorting    critically    validation    maximize    governing    approval    profiling    lives    medicine    enabled    memory    internal    small    culturing    confounding    hundreds    causal    therapies    disentangles    molecular    mechanistic    principles    drug    immunofluorescence    omics    ones    endangers    individuality    rna    treatment    tools    trial    receive    relevance    multicellular    types    predictive    burdens    platform    led    prior    screening    malignancies    determinants    reaching    comparisons    reveals    cell    population    powerful    sub    hematologic    ex    throughput    healthy    physiological    proteomic    quantify    autonomous    aggressive    incompletely    prevents    single    multiplexed    harmful    image    patient    alone    neutralizing    malignant    neural    exposure    sequencing    biopsies    network    multiclass    cellular    combine    cells    automated    amenable    vivo    first   

Project "SCIPER" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙500˙000.00

Map

 Project objective

The cellular and molecular systems that determine drug responses in cancer are complex, highly individual, and incompletely understood. As a result, many cancer patients receive ineffective or even harmful therapies, which endangers lives, burdens healthcare systems, and prevents new therapies from reaching clinical approval.

To address this problem, we are developing a platform that measures hundreds of ex vivo drug responses from small patient biopsies by immunofluorescence, automated confocal microscopy, single-cell image analysis, and machine learning. We preserve cellular memory and maximize physiological relevance by not culturing or sorting cells prior to drug exposure. Sub-cellular, single-cell, and cell population-wide image analysis reveals on-target drug responses and disentangles multicellular ones. In a first interventional clinical trial, this phenotypic information alone led to strongly improved treatment of patients with aggressive hematologic malignancies.

Enabled by this high-throughput, predictive, and phenotypic information, I here propose to identify the molecular and cellular systems that govern treatment response individuality in cancer. (Aim 1) We will combine drug response profiling with RNA sequencing and proteomic measurements of malignant and healthy cells from the same biopsies. Critically, the patient-internal comparisons in both screening and OMICs allow neutralizing complex confounding factors. (Aim 2) New multiplexed immunofluorescence and convolutional neural network-based analyses will identify multiclass cell-types and -states, and quantify non-cell-autonomous responses. (Aim 3) Computational integration and causal inference will identify the molecular determinants and governing principles of drug response individuality in cancer, amenable to further validation. This proposal will thus improve our mechanistic understanding of cancer individuality and develop powerful new tools for OMICs-based precision medicine.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCIPER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCIPER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More