Explore the words cloud of the SCIPER project. It provides you a very rough idea of what is the project "SCIPER" about.
The following table provides information about the project.
Coordinator |
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2018 |
Duration (year-month-day) | from 2018-11-01 to 2023-10-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH | CH (ZUERICH) | coordinator | 1˙500˙000.00 |
The cellular and molecular systems that determine drug responses in cancer are complex, highly individual, and incompletely understood. As a result, many cancer patients receive ineffective or even harmful therapies, which endangers lives, burdens healthcare systems, and prevents new therapies from reaching clinical approval.
To address this problem, we are developing a platform that measures hundreds of ex vivo drug responses from small patient biopsies by immunofluorescence, automated confocal microscopy, single-cell image analysis, and machine learning. We preserve cellular memory and maximize physiological relevance by not culturing or sorting cells prior to drug exposure. Sub-cellular, single-cell, and cell population-wide image analysis reveals on-target drug responses and disentangles multicellular ones. In a first interventional clinical trial, this phenotypic information alone led to strongly improved treatment of patients with aggressive hematologic malignancies.
Enabled by this high-throughput, predictive, and phenotypic information, I here propose to identify the molecular and cellular systems that govern treatment response individuality in cancer. (Aim 1) We will combine drug response profiling with RNA sequencing and proteomic measurements of malignant and healthy cells from the same biopsies. Critically, the patient-internal comparisons in both screening and OMICs allow neutralizing complex confounding factors. (Aim 2) New multiplexed immunofluorescence and convolutional neural network-based analyses will identify multiclass cell-types and -states, and quantify non-cell-autonomous responses. (Aim 3) Computational integration and causal inference will identify the molecular determinants and governing principles of drug response individuality in cancer, amenable to further validation. This proposal will thus improve our mechanistic understanding of cancer individuality and develop powerful new tools for OMICs-based precision medicine.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCIPER" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SCIPER" are provided by the European Opendata Portal: CORDIS opendata.