Opendata, web and dolomites

SCIPER SIGNED

Studying Cancer Individuality by Personal and Predictive Drug Screening and Differential OMICs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SCIPER project word cloud

Explore the words cloud of the SCIPER project. It provides you a very rough idea of what is the project "SCIPER" about.

rna    inference    machine    automated    reveals    governing    clinical    medicine    treatment    multiclass    aggressive    validation    learning    culturing    phenotypic    govern    critically    autonomous    precision    screening    confocal    healthcare    types    sorting    vivo    individuality    hundreds    small    harmful    healthy    comparisons    combine    population    prevents    computational    first    cells    incompletely    ex    sequencing    sub    preserve    internal    reaching    convolutional    patients    trial    throughput    cancer    microscopy    cellular    amenable    network    ineffective    enabled    profiling    multicellular    receive    lives    immunofluorescence    molecular    single    physiological    image    causal    exposure    powerful    determinants    mechanistic    confounding    burdens    endangers    approval    omics    multiplexed    patient    neural    quantify    biopsies    tools    proteomic    cell    led    alone    integration    prior    therapies    maximize    individual    predictive    interventional    relevance    drug    principles    hematologic    memory    malignancies    malignant    ones    neutralizing    disentangles    platform   

Project "SCIPER" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙500˙000.00

Map

 Project objective

The cellular and molecular systems that determine drug responses in cancer are complex, highly individual, and incompletely understood. As a result, many cancer patients receive ineffective or even harmful therapies, which endangers lives, burdens healthcare systems, and prevents new therapies from reaching clinical approval.

To address this problem, we are developing a platform that measures hundreds of ex vivo drug responses from small patient biopsies by immunofluorescence, automated confocal microscopy, single-cell image analysis, and machine learning. We preserve cellular memory and maximize physiological relevance by not culturing or sorting cells prior to drug exposure. Sub-cellular, single-cell, and cell population-wide image analysis reveals on-target drug responses and disentangles multicellular ones. In a first interventional clinical trial, this phenotypic information alone led to strongly improved treatment of patients with aggressive hematologic malignancies.

Enabled by this high-throughput, predictive, and phenotypic information, I here propose to identify the molecular and cellular systems that govern treatment response individuality in cancer. (Aim 1) We will combine drug response profiling with RNA sequencing and proteomic measurements of malignant and healthy cells from the same biopsies. Critically, the patient-internal comparisons in both screening and OMICs allow neutralizing complex confounding factors. (Aim 2) New multiplexed immunofluorescence and convolutional neural network-based analyses will identify multiclass cell-types and -states, and quantify non-cell-autonomous responses. (Aim 3) Computational integration and causal inference will identify the molecular determinants and governing principles of drug response individuality in cancer, amenable to further validation. This proposal will thus improve our mechanistic understanding of cancer individuality and develop powerful new tools for OMICs-based precision medicine.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCIPER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCIPER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

OAlipotherapy (2018)

Long-retention liposomic drug-delivery for intra-articular osteoarthritis therapy

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More