Opendata, web and dolomites

SCIPER SIGNED

Studying Cancer Individuality by Personal and Predictive Drug Screening and Differential OMICs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SCIPER project word cloud

Explore the words cloud of the SCIPER project. It provides you a very rough idea of what is the project "SCIPER" about.

cells    determinants    led    burdens    comparisons    integration    alone    machine    reaching    incompletely    harmful    population    ones    multicellular    prevents    single    exposure    individuality    hundreds    multiclass    molecular    patient    throughput    cancer    immunofluorescence    ineffective    therapies    phenotypic    tools    confocal    cellular    predictive    reveals    govern    mechanistic    healthcare    trial    causal    neutralizing    prior    critically    combine    medicine    image    multiplexed    enabled    preserve    malignant    drug    relevance    precision    confounding    clinical    vivo    computational    hematologic    treatment    sub    interventional    network    culturing    rna    validation    learning    principles    internal    powerful    convolutional    lives    ex    quantify    autonomous    amenable    physiological    endangers    screening    maximize    first    omics    sequencing    platform    sorting    automated    neural    healthy    microscopy    small    biopsies    governing    individual    inference    malignancies    profiling    memory    approval    cell    aggressive    receive    disentangles    patients    proteomic    types   

Project "SCIPER" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙500˙000.00

Map

 Project objective

The cellular and molecular systems that determine drug responses in cancer are complex, highly individual, and incompletely understood. As a result, many cancer patients receive ineffective or even harmful therapies, which endangers lives, burdens healthcare systems, and prevents new therapies from reaching clinical approval.

To address this problem, we are developing a platform that measures hundreds of ex vivo drug responses from small patient biopsies by immunofluorescence, automated confocal microscopy, single-cell image analysis, and machine learning. We preserve cellular memory and maximize physiological relevance by not culturing or sorting cells prior to drug exposure. Sub-cellular, single-cell, and cell population-wide image analysis reveals on-target drug responses and disentangles multicellular ones. In a first interventional clinical trial, this phenotypic information alone led to strongly improved treatment of patients with aggressive hematologic malignancies.

Enabled by this high-throughput, predictive, and phenotypic information, I here propose to identify the molecular and cellular systems that govern treatment response individuality in cancer. (Aim 1) We will combine drug response profiling with RNA sequencing and proteomic measurements of malignant and healthy cells from the same biopsies. Critically, the patient-internal comparisons in both screening and OMICs allow neutralizing complex confounding factors. (Aim 2) New multiplexed immunofluorescence and convolutional neural network-based analyses will identify multiclass cell-types and -states, and quantify non-cell-autonomous responses. (Aim 3) Computational integration and causal inference will identify the molecular determinants and governing principles of drug response individuality in cancer, amenable to further validation. This proposal will thus improve our mechanistic understanding of cancer individuality and develop powerful new tools for OMICs-based precision medicine.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCIPER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCIPER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

QLite (2019)

Quantum Light Enterprise

Read More  

OAlipotherapy (2018)

Long-retention liposomic drug-delivery for intra-articular osteoarthritis therapy

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More