Opendata, web and dolomites

LIGHTPORT SIGNED

From light-stimulated anion receptors to transmembrane carriers and pumps

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LIGHTPORT project word cloud

Explore the words cloud of the LIGHTPORT project. It provides you a very rough idea of what is the project "LIGHTPORT" about.

receptors    packages    localized    induce    utilizing    triggered    responsive    phospholipid    regulate    biological    solar    channel    artificial    wp1    membrane    interlocked    interdisciplinary    passive    rigid    wp2    bacterial    anions    alternative    endeavour    mechanically    store    synthetic    behavior    gradients    platforms    directed    progress    divided    pharmacological    photoswitches    view    transmembrane    active    light    cancer    static    pumping    prepared    visible    carriers    pumps    mostly    gradient    binding    transport    concentration    modulated    last    wp3    despite    mimic    decade    treatment    actuated    hosts    proteins    route    function    natural    chemists    diseases    completely    stimuli    structurally    constructing    transporters    bilayers    membranes    gated    integrate    deals    dynamically    whereas    cell    dual    structures    environment    photoswitchable    death    anion    convert    dysregulation    energy    anionic    contemporary    mediated    toward   

Project "LIGHTPORT" data sheet

The following table provides information about the project.

Coordinator
RIJKSUNIVERSITEIT GRONINGEN 

Organization address
address: Broerstraat 5
city: GRONINGEN
postcode: 9712CP
website: www.rug.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙461 €
 EC max contribution 1˙499˙461 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RIJKSUNIVERSITEIT GRONINGEN NL (GRONINGEN) coordinator 1˙499˙461.00

Map

 Project objective

The transport of anions across the cell membrane, which is mediated by transport proteins, is essential to many important biological processes. Dysregulation of this transport has been associated to various diseases and therefore, chemists endeavour to develop artificial receptors that mimic the function of natural transporters. Despite much progress over the last decade, the current artificial systems are mostly static, while proteins are able to change their activity dynamically in response to stimuli in the environment. To integrate such stimuli-controlled behavior in synthetic systems is a key contemporary challenge. In view of this, the goal of the proposed research program is to develop anion receptors in which the binding properties can be effectively modulated by light and to apply these receptors as transmembrane carriers and pumps, in order to regulate passive transport (i.e. down a concentration gradient) and to induce active transport (i.e. against a concentration gradient). This interdisciplinary program is divided into three work packages: WP1 aims at the development of structurally rigid and visible-light-actuated photoswitches and their use as platforms for constructing anion receptors; WP2 deals with the development of mechanically interlocked structures as photoswitchable anionic hosts; WP3 is directed at utilizing these receptors for light-gated transport and light-driven pumping of anions across phospholipid bilayers, whereas also an alternative dual-responsive anion channel will be prepared. Eventually, it is expected that this work will open a new route toward light-based localized pharmacological treatment, e.g. via light-triggered cancer or bacterial cell death. Furthermore, active transport systems, that are able to build up and maintain concentration gradients across membranes, could provide a completely new view on how to convert and store light (solar) energy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIGHTPORT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIGHTPORT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

BALANCE (2019)

Mapping Dispersion Spectroscopically in Large Gas-Phase Molecular Ions

Read More