Opendata, web and dolomites

LIGHTPORT SIGNED

From light-stimulated anion receptors to transmembrane carriers and pumps

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LIGHTPORT project word cloud

Explore the words cloud of the LIGHTPORT project. It provides you a very rough idea of what is the project "LIGHTPORT" about.

bilayers    treatment    modulated    wp2    visible    natural    solar    biological    cell    utilizing    platforms    prepared    death    mediated    photoswitchable    pharmacological    store    behavior    membranes    induce    regulate    view    integrate    deals    triggered    concentration    mimic    gradients    static    transport    mostly    interdisciplinary    completely    energy    wp3    structurally    pumps    transmembrane    wp1    mechanically    responsive    constructing    cancer    alternative    hosts    divided    artificial    last    active    function    stimuli    actuated    chemists    interlocked    whereas    despite    contemporary    rigid    progress    anions    passive    decade    anion    gradient    bacterial    carriers    localized    dynamically    route    dual    light    diseases    phospholipid    packages    photoswitches    anionic    endeavour    binding    environment    membrane    pumping    dysregulation    gated    directed    toward    structures    transporters    channel    convert    proteins    synthetic    receptors   

Project "LIGHTPORT" data sheet

The following table provides information about the project.

Coordinator
RIJKSUNIVERSITEIT GRONINGEN 

Organization address
address: Broerstraat 5
city: GRONINGEN
postcode: 9712CP
website: www.rug.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙461 €
 EC max contribution 1˙499˙461 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RIJKSUNIVERSITEIT GRONINGEN NL (GRONINGEN) coordinator 1˙499˙461.00

Map

 Project objective

The transport of anions across the cell membrane, which is mediated by transport proteins, is essential to many important biological processes. Dysregulation of this transport has been associated to various diseases and therefore, chemists endeavour to develop artificial receptors that mimic the function of natural transporters. Despite much progress over the last decade, the current artificial systems are mostly static, while proteins are able to change their activity dynamically in response to stimuli in the environment. To integrate such stimuli-controlled behavior in synthetic systems is a key contemporary challenge. In view of this, the goal of the proposed research program is to develop anion receptors in which the binding properties can be effectively modulated by light and to apply these receptors as transmembrane carriers and pumps, in order to regulate passive transport (i.e. down a concentration gradient) and to induce active transport (i.e. against a concentration gradient). This interdisciplinary program is divided into three work packages: WP1 aims at the development of structurally rigid and visible-light-actuated photoswitches and their use as platforms for constructing anion receptors; WP2 deals with the development of mechanically interlocked structures as photoswitchable anionic hosts; WP3 is directed at utilizing these receptors for light-gated transport and light-driven pumping of anions across phospholipid bilayers, whereas also an alternative dual-responsive anion channel will be prepared. Eventually, it is expected that this work will open a new route toward light-based localized pharmacological treatment, e.g. via light-triggered cancer or bacterial cell death. Furthermore, active transport systems, that are able to build up and maintain concentration gradients across membranes, could provide a completely new view on how to convert and store light (solar) energy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIGHTPORT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIGHTPORT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

TechChange (2019)

Technological Change: New Sources, Consequences, and Impact Mitigation

Read More