Opendata, web and dolomites

hipQCD SIGNED

Highest Precision QCD predictions for a new era in Higgs boson phenomenology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 hipQCD project word cloud

Explore the words cloud of the hipQCD project. It provides you a very rough idea of what is the project "hipQCD" about.

rarr    cern    hadron    discovery    perturbation    amplitudes    accuracy    energy    first    tested    energies    differential    techniques    era    channels    description    loop    ultimate    extremely    marked    precision    scales    reactions    cutting    besides    hipqcd    fusion    coherent    paramount    standard    precise    fundamental    collider    ranging    exploration    configurations    boson    association    qft    theory    quarks    significantly    theoretical    background    behaves    groundbreaking    kinematics    gluon    experimentally    picture    structures    predicted    data    physics    innovative    colliders    profit    predictions    signal    vector    orders    absolute    particles    valid    interactions    extreme    characterization    qcd    investigation    amplitude    ascertain    lhc    computations    phenomenological    time    edge    soft    investigations    higgs    decay    performing    phenomenology    tackle    highest    model    particle    beginning    collinear    realistic    thorough   

Project "hipQCD" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙497˙016 €
 EC max contribution 1˙497˙016 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2024-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙497˙016.00

Map

 Project objective

The discovery of the Higgs boson at the CERN Large Hadron Collider (LHC) marked the beginning of a new era for particle physics. For the first time, we may have an experimentally tested and theoretically coherent picture of fundamental interactions, valid up to very high energies. A thorough exploration of the Higgs sector, to ascertain whether or not the new particle behaves as predicted by the Standard Model is now paramount.

Such an investigation is extremely challenging, and it requires absolute control over many complex Higgs signal and background processes. The goal of hipQCD is to develop innovative techniques for highest precision theoretical predictions at colliders, and to apply them for a wide range of high impact Higgs phenomenological studies at the LHC.

hipQCD addresses the major Higgs production and decay channels. Its main objectives are

1. to provide realistic predictions at ultimate accuracy for the main Higgs production and decay channels, by developing cutting-edge fully differential predictions at the third order in QCD perturbation theory for Higgs production in gluon and vector boson fusion and for Higgs decay to b quarks;

2. to allow for precise and reliable Higgs characterization studies at very high energy scales, by developing novel techniques to tackle multi-loop amplitudes in extreme kinematics configurations;

3. to significantly improve our description of Higgs production in association with other Standard Model particles, by performing groundbreaking investigations of key 2 → 3 reactions at higher orders in perturbation theory.

hipQCD involves different areas of particle theory, ranging from multi-loop amplitude computations to the study of soft/collinear structures in QFT to comprehensive Higgs LHC phenomenology. Besides their crucial impact on Higgs physics, its results could also be applied to a broader range of phenomenological studies and will be essential to fully profit from existing and future collider data.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HIPQCD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HIPQCD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More