Explore the words cloud of the InOutBioLight project. It provides you a very rough idea of what is the project "InOutBioLight" about.
The following table provides information about the project.
Coordinator |
FUNDACION IMDEA MATERIALES
Organization address contact info |
Coordinator Country | Spain [ES] |
Total cost | 1˙999˙188 € |
EC max contribution | 1˙999˙188 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-COG |
Funding Scheme | ERC-COG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-06-01 to 2025-05-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | FUNDACION IMDEA MATERIALES | ES (GETAFE) | coordinator | 1˙999˙188.00 |
InOutBioLight aims to design multifunctional rubbers with enhanced mechanical, thermal, color-converting, and light-guiding features towards advanced biohybrid lighting and photovoltaic technologies. The latter are placed at the forefront of the EU efforts for low-cost production and efficient consumption of electricity, a critical issue for a sustainable development. In this context, the use of biomolecules as functional components in lighting and photovoltaic devices is still a challenge, as they quickly denature under storage and device operation conditions. This paradigm has changed using an innovative rubber-like material, in which the biofunctionality is long preserved. As a proof-of-concept, color down-converting rubbers based on fluorescent proteins were used to design the first biohybrid white light-emitting diode (bio-HWLED). To develop a new generation of biohybrid devices, InOutBioLight will address the following critical issues, namely i) the nature of the protein-matrix stabilization, ii) how to enhance the thermal/mechanical features, iii) how to design multifunctional rubbers, iv) how to mimic natural patterns for light-guiding, and v) how to expand the technological use of the rubber approach. To achieve these goals, InOutBioLight involves comprehensive spectroscopic, microscopic, and mechanical studies to investigate the protein-matrix interaction using new polymer matrices, additives, and protein-based nanoparticles. In addition, the mechanical, thermal, and light-coupling features will be enhanced using structural biocompounds and reproducing biomorphic patterns. As such, InOutBioLight offers three major advances: i) a thorough scientific basis for the rubber approach, ii) a significant thrust of the emerging bio-HWLEDs, and iii) innovative breakthroughs beyond state-of-the-art biohybrid solar cells.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INOUTBIOLIGHT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "INOUTBIOLIGHT" are provided by the European Opendata Portal: CORDIS opendata.