Explore the words cloud of the MechanoTubes project. It provides you a very rough idea of what is the project "MechanoTubes" about.
The following table provides information about the project.
Coordinator |
UNIVERSITEIT TWENTE
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 2˙000˙000 € |
EC max contribution | 2˙000˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-COG |
Funding Scheme | ERC-COG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-03-01 to 2024-02-29 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITEIT TWENTE | NL (ENSCHEDE) | coordinator | 2˙000˙000.00 |
Artificial molecular motors and switches have the potential to become a core part of nanotechnology. However, a wide gap in length scales still remains unaccounted for, between the operation of these molecules in solution, where their individual mechanical action is randomly dispersed in the Brownian storm, and on the other hand their action at the macroscopic level, e.g. in polymer networks and crystals.
This proposal is about bridging this gap, by developing chemo-mechanical transduction strategies that will allow dynamic molecules to perform a range of unprecedented tasks, e.g. by generating strong directional forces at the nanoscale, and through shape-shifting microscopic formations.
This project aims to harness the mechanically-purposeful motion of dynamic molecules as to generate measurable forces from the nanoscale, and ultimately establish operational principles for chemo-mechanical transduction in supramolecular systems.
In my wholly synthetic approach, I draw inspiration from the operational principles of microtubules. I will incorporate molecular photo-switches into supramolecular tubes, and enable the controlled growth and disassembly of the tubes by using light as the energy input. Thus, I will: (i) Synthesize stiff supramolecular tubes that grow actively under continuous illumination, and disassemble with a power stroke as soon as illumination stops; (ii) Measure, and harvest the forces generated by the tubes to manipulate individual nanoparticles with a sense of directionality; and (iii) Encapsulate the tubes into water droplets and vesicles, to yield shape-shifting, and eventually rudimentary splitting models for cells.
This project reaches beyond the state of the art in adaptive molecular nano-systems, by pioneering strategies to engineer and harness strain in supramolecular assemblies. It thus lays the foundations for machineries that are capable of manipulating matter at length scales that are also those at which the cytoskeleton operates.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECHANOTUBES" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MECHANOTUBES" are provided by the European Opendata Portal: CORDIS opendata.