Opendata, web and dolomites

INSPIRE SIGNED

System-wide discovery and analysis of inositol pyrophosphate signaling networks in plants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "INSPIRE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE GENEVE 

Organization address
address: RUE DU GENERAL DUFOUR 24
city: GENEVE
postcode: 1211
website: www.unige.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙781˙251 €
 EC max contribution 1˙781˙251 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2024-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE CH (GENEVE) coordinator 1˙781˙251.00

Map

 Project objective

Inositol pyrophosphates (PP-InsPs) are soluble signaling molecules known to play diverse roles in fungal and animal cell signaling. The metabolism of PP-InsPs in plants however is poorly understood and many signaling pathways controlled by PP-InsPs remain to be discovered. Funded by an ERC starting grant, we have previously identified protein sensor domains for PP-InsPs, which allow PP-InsPs to act as central regulators of phosphate homeostasis in all eukaryotes. Genetic disruption of PP-InsP synthesis results in dramatic phenotypes in the model plant Arabidopsis, which however cannot be rationalized by defects in phosphate signaling only. Based on these physiological observations, we generated a system-wide Arabidopsis PP-InsP interactome, using an affinity-matrix absorbed non-hydrolyzable PP-InsP analog. Surprisingly, hundreds of novel candidates from different protein families were identified in this screen, now enabling us to study PP-InsP catabolism and a multitude of PP-InsP-mediated signaling processes. Here, I propose to combine quantitative biochemistry and structural biology with cell biology and genome editing to dissect plant PP-InsP signaling networks at the physiological level and in mechanistic detail. Specifically, we will define the roles for PP-InsPs in plant light sensing and signaling, in flowering time regulation and in plant immune responses. Our ultimate goal will be to investigate the cross-talk between different PP-InsP-controlled signaling pathways and to define central signaling hubs. I envision that the work outlined in this proposal will yield a mechanistically validated system’s-level view of PP-InsP signal transduction in plants, which may allow us to better understand how plants develop and interact with their environment, and that may enable us to improve crop performance in the future.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INSPIRE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INSPIRE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RECON (2019)

Reprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space

Read More  

AllergenDetect (2019)

Comprehensive allergen detection using synthetic DNA libraries

Read More  

DEEPTIME (2020)

Probing the history of matter in deep time

Read More