Opendata, web and dolomites

FICOMOL SIGNED

Field Control of Cold Molecular Collisions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FICOMOL" data sheet

The following table provides information about the project.

Coordinator
STICHTING KATHOLIEKE UNIVERSITEIT 

Organization address
address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ
website: www.radboudumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING KATHOLIEKE UNIVERSITEIT NL (NIJMEGEN) coordinator 2˙000˙000.00

Map

 Project objective

It is a long held dream of chemical physicists to study (and to control!) the interactions between individual molecules in completely specified collisions. This project brings this goal within reach. I will develop novel methods to study collisions between individual molecules at temperatures between 10 mK and 10 K, and to manipulate their interaction using electric and magnetic fields. Under these cold conditions, the collisions are dominated by quantum effects such as interference and tunneling. Scattering resonances occur that respond sensitively to external electric or magnetic fields, yielding the thrilling perspective to provide “control knobs” to steer the outcome of a collision. Building on my unique experience with state-of-the-art molecular beam deceleration methods, I will study scattering resonances for chemically relevant systems involving molecules such as OH, NO, NH3 and H2CO in crossed beam experiments. Using external electric or magnetic fields, we will tune the positions and widths of resonances, such that collision rates can be changed by orders of magnitude. This type of “collision engineering” will be used to induce and study hitherto unexplored quantum phenomena, such as the merging of individual resonances, and resonant energy transfer in bimolecular collisions. Measurements of exotic collision phenomena under yet unexplored conditions as proposed here provide excellent tests for quantum theories of molecular interactions, and pave the way towards the engineering of novel quantum structures, or the collective properties of interacting molecular systems. The proposed research program will transform this field from merely “probing nature” with the highest possible detail to “manipulating nature” with the highest possible level of control. It will open up a new and intellectually rich research field in chemical physics and physical chemistry, and will be a major breakthrough in the emerging research field of cold molecules.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FICOMOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FICOMOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More