Opendata, web and dolomites

BiocatSusChem SIGNED

Biocatalysis for Sustainable Chemistry – Understanding Oxidation/Reduction of Small Molecules by Redox Metalloenzymes via a Suite of Steady State and Transient Infrared Electrochemical Methods

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BiocatSusChem project word cloud

Explore the words cloud of the BiocatSusChem project. It provides you a very rough idea of what is the project "BiocatSusChem" about.

catalytic    environment    introducing    microorganisms    chains    inhibitors    events    biomimetic    ideally    tools    blocks    catalysis    carbon    nature    relay    generate    central    molecule    protonation    global    accessible    propelling    ambient    infrared    amino    chemical    precise    coordinated    ways    experimental    inside    activation    stability    fuels    attempts    electron    transient    dihydrogen    follow    failed    finely    triggered    monoxide    models    multicentre    reproduce    enzymes    binding    ammonia    uncovering    spectroscopy    reactants    solved    reactions    mid    dioxide    proton    understand    hydrogenase    metalloenzymes    bonds    probe    energy    iron    many    sustainable    steady    turnover    generation    reveal    mechanisms    nickel    situ    catalyse    dinitrogen    suited    transformation    metalloenzyme    substrate    ir    biology    abundant    dehydrogenase    chemistry    acids    structural    report    biological    redox    suite    active    utilisation    inspired    largely    formate    building    transfer    bio    unified    nitrogenase    strength    choreographed    metals    necessarily    develops    electrochemically    selectivity    molybdenum    small    sites    catalysts   

Project "BiocatSusChem" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙997˙286 €
 EC max contribution 1˙997˙286 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙997˙286.00

Map

 Project objective

Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOCATSUSCHEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOCATSUSCHEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More