Opendata, web and dolomites

WEAVERBIRD_DEFENCE SIGNED

Unravelling an extended phenotype: sexual selection and the evolution of nest architecture in weaverbird defence against brood parasitism

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 WEAVERBIRD_DEFENCE project word cloud

Explore the words cloud of the WEAVERBIRD_DEFENCE project. It provides you a very rough idea of what is the project "WEAVERBIRD_DEFENCE" about.

reciprocally    maintains    laying    arms    absence    analysing    existed    fundamental    nest    phenotypic    evolutionary    preventing    techniques    defence    diversity    elaborate    intraspecific    influences    deterrent    forms    life    opportunity    gaining    pace    coevolutionary    context    substantially    coevolution    unrivalled    generations    biodiversity    weaverbirds    tricks    partition    islands    cuckoos    computational    closely    parasitic    populations    parasites    brood    exhibit    potentially    evolution    little    precisely    doubles    hypothesis    diverse    combat    diederik    social    interacts    trajectory    textbook    cuckoo    male    interactions    interdisciplinary    host    gap    analytical    quantified    races    hosts    architectural    architecture    parasite    outcomes    extended    sexually    mating    pressures    choose    contributes    sexual    females    parasitism    trait    biologists    hundred    species    interact    selecting    defences   

Project "WEAVERBIRD_DEFENCE" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 289˙732 €
 EC max contribution 289˙732 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-07-08   to  2022-07-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 289˙732.00
2    TRUSTEES OF PRINCETON UNIVERSITY US (PRINCETON, NJ) partner 0.00

Map

 Project objective

A major challenge for evolutionary biologists is to explain how selection maintains biodiversity. Coevolution between closely associated species contributes substantially to the diversity of life. Yet little is known about how coevolutionary pressures between different species interact with selection from intraspecific social interactions. I will address this fundamental gap in our knowledge by analysing how sexual selection interacts with the evolution of host defences against a brood parasite. Cuckoos and their hosts provide a textbook example of coevolution, by reciprocally selecting for better parasitic tricks or better host defences. I will determine whether sexual selection influences the trajectory and pace of coevolutionary change and investigate whether this is why similar coevolutionary arms races have such diverse outcomes. The weaverbirds and their brood parasite the Diederik cuckoo provide an unrivalled opportunity to test this hypothesis given that weaverbirds exhibit a sexually-selected extended phenotypic trait: an elaborate nest that the females choose before mating with the male and laying in his nest. This trait also potentially doubles as a deterrent to brood parasites, by preventing them from gaining access to the nest. Second, this trait can be precisely quantified by applying state-of-the-art computational and analytical techniques to this novel context. Third, populations of weaverbirds have been introduced to islands where they have existed in the absence of selection from brood parasitism for over one hundred generations, providing the opportunity to partition out effects of different selection pressures. With this interdisciplinary approach I will investigate whether nest architectural defences have evolved to combat brood parasitism, how the evolution of these defences interacts with sexual selection, and how the evolution of nest architecture influences the evolution of other forms of defence against brood parasites.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WEAVERBIRD_DEFENCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WEAVERBIRD_DEFENCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

qCHROMDEK (2019)

Quantitative insight into chromatin nanoscale structure: sub-nuclear organisation of oncoprotein DEK

Read More  

MSOPGDM (2019)

Mechanistic studies of prokaryotic genome defense mechanisms

Read More  

TGL (2019)

Transition Governance and Law

Read More