Opendata, web and dolomites

WEAVERBIRD_DEFENCE SIGNED

Unravelling an extended phenotype: sexual selection and the evolution of nest architecture in weaverbird defence against brood parasitism

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 WEAVERBIRD_DEFENCE project word cloud

Explore the words cloud of the WEAVERBIRD_DEFENCE project. It provides you a very rough idea of what is the project "WEAVERBIRD_DEFENCE" about.

evolutionary    architecture    forms    diederik    parasites    brood    partition    existed    substantially    evolution    pace    cuckoo    host    contributes    biologists    influences    pressures    generations    defence    races    diversity    elaborate    females    outcomes    selecting    little    sexual    cuckoos    coevolution    intraspecific    textbook    interacts    parasite    social    diverse    deterrent    computational    gaining    coevolutionary    analytical    populations    potentially    preventing    biodiversity    parasitic    absence    hosts    trait    hypothesis    species    maintains    interactions    interdisciplinary    choose    fundamental    phenotypic    extended    architectural    arms    parasitism    gap    hundred    life    trajectory    tricks    sexually    nest    techniques    male    closely    quantified    analysing    precisely    reciprocally    islands    combat    interact    unrivalled    defences    opportunity    laying    exhibit    doubles    context    weaverbirds    mating   

Project "WEAVERBIRD_DEFENCE" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 289˙732 €
 EC max contribution 289˙732 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-07-08   to  2022-07-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 289˙732.00
2    TRUSTEES OF PRINCETON UNIVERSITY US (PRINCETON, NJ) partner 0.00

Map

 Project objective

A major challenge for evolutionary biologists is to explain how selection maintains biodiversity. Coevolution between closely associated species contributes substantially to the diversity of life. Yet little is known about how coevolutionary pressures between different species interact with selection from intraspecific social interactions. I will address this fundamental gap in our knowledge by analysing how sexual selection interacts with the evolution of host defences against a brood parasite. Cuckoos and their hosts provide a textbook example of coevolution, by reciprocally selecting for better parasitic tricks or better host defences. I will determine whether sexual selection influences the trajectory and pace of coevolutionary change and investigate whether this is why similar coevolutionary arms races have such diverse outcomes. The weaverbirds and their brood parasite the Diederik cuckoo provide an unrivalled opportunity to test this hypothesis given that weaverbirds exhibit a sexually-selected extended phenotypic trait: an elaborate nest that the females choose before mating with the male and laying in his nest. This trait also potentially doubles as a deterrent to brood parasites, by preventing them from gaining access to the nest. Second, this trait can be precisely quantified by applying state-of-the-art computational and analytical techniques to this novel context. Third, populations of weaverbirds have been introduced to islands where they have existed in the absence of selection from brood parasitism for over one hundred generations, providing the opportunity to partition out effects of different selection pressures. With this interdisciplinary approach I will investigate whether nest architectural defences have evolved to combat brood parasitism, how the evolution of these defences interacts with sexual selection, and how the evolution of nest architecture influences the evolution of other forms of defence against brood parasites.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WEAVERBIRD_DEFENCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WEAVERBIRD_DEFENCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

FarGo (2019)

'Farming God's Way': Cultivation and religious practice in contemporary South Africa

Read More