Opendata, web and dolomites

WEAVERBIRD_DEFENCE SIGNED

Unravelling an extended phenotype: sexual selection and the evolution of nest architecture in weaverbird defence against brood parasitism

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 WEAVERBIRD_DEFENCE project word cloud

Explore the words cloud of the WEAVERBIRD_DEFENCE project. It provides you a very rough idea of what is the project "WEAVERBIRD_DEFENCE" about.

sexually    defence    unrivalled    trajectory    diverse    contributes    cuckoo    absence    populations    outcomes    male    potentially    extended    choose    deterrent    maintains    analytical    hosts    parasitism    generations    architectural    closely    computational    pace    pressures    biodiversity    cuckoos    nest    elaborate    diederik    host    forms    trait    interacts    quantified    hypothesis    context    arms    little    diversity    gap    exhibit    coevolution    reciprocally    islands    phenotypic    laying    interdisciplinary    influences    doubles    partition    intraspecific    interactions    evolutionary    parasites    existed    textbook    weaverbirds    combat    sexual    coevolutionary    social    techniques    hundred    parasite    defences    architecture    mating    gaining    biologists    brood    tricks    races    preventing    substantially    opportunity    precisely    species    selecting    interact    fundamental    parasitic    females    analysing    life    evolution   

Project "WEAVERBIRD_DEFENCE" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 289˙732 €
 EC max contribution 289˙732 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-07-08   to  2022-07-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 289˙732.00
2    TRUSTEES OF PRINCETON UNIVERSITY US (PRINCETON, NJ) partner 0.00

Map

 Project objective

A major challenge for evolutionary biologists is to explain how selection maintains biodiversity. Coevolution between closely associated species contributes substantially to the diversity of life. Yet little is known about how coevolutionary pressures between different species interact with selection from intraspecific social interactions. I will address this fundamental gap in our knowledge by analysing how sexual selection interacts with the evolution of host defences against a brood parasite. Cuckoos and their hosts provide a textbook example of coevolution, by reciprocally selecting for better parasitic tricks or better host defences. I will determine whether sexual selection influences the trajectory and pace of coevolutionary change and investigate whether this is why similar coevolutionary arms races have such diverse outcomes. The weaverbirds and their brood parasite the Diederik cuckoo provide an unrivalled opportunity to test this hypothesis given that weaverbirds exhibit a sexually-selected extended phenotypic trait: an elaborate nest that the females choose before mating with the male and laying in his nest. This trait also potentially doubles as a deterrent to brood parasites, by preventing them from gaining access to the nest. Second, this trait can be precisely quantified by applying state-of-the-art computational and analytical techniques to this novel context. Third, populations of weaverbirds have been introduced to islands where they have existed in the absence of selection from brood parasitism for over one hundred generations, providing the opportunity to partition out effects of different selection pressures. With this interdisciplinary approach I will investigate whether nest architectural defences have evolved to combat brood parasitism, how the evolution of these defences interacts with sexual selection, and how the evolution of nest architecture influences the evolution of other forms of defence against brood parasites.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WEAVERBIRD_DEFENCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WEAVERBIRD_DEFENCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More