Opendata, web and dolomites

ImmunoMECH SIGNED

High-performance biomechanical model of combined immunotherapy and anti-angiogenic cancer treatment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ImmunoMECH project word cloud

Explore the words cloud of the ImmunoMECH project. It provides you a very rough idea of what is the project "ImmunoMECH" about.

collaborations    validate    optimization    host    vasculature    flow    optimal    treat    potent    supply    vessel    eradicate    blood    expertise    space    metastatic    tumors    vessels    performance    treatment    structure    systemic    cells    receiving    normalization    leaving    survival    therapies    standard    drugs    solid    gaining    training    model    molecular    hyper    invasive    numerical    experimentally    chemo    interendothelial    permeability    therapeutic    computing    efficacy    maturity    microenvironment    fail    sustained    hypo    neural    reduce    combined    impaired    medicines    types    dramatically    fluid    perfused    hypoxia    explains    abnormalities    hypothesize    hinder    procedure    networks    clinical    immune    patient    hypoxic    experimental    oxygenation    interstitial    evade    rendering    cancer    immunotherapy    repair    negatively    shrinkage    patients    strategy    cellular    though    vascular    exhibit    algorithms    drug    causes    artificial    inefficient    international    complement    openings    perfusion    subset    immunotherapeutic    professional    tumor    permeable    skills   

Project "ImmunoMECH" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF CYPRUS 

Organization address
address: KALLIPOLEOS STREET 75
city: NICOSIA
postcode: 1678
website: www.ucy.ac.cy

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Cyprus [CY]
 Total cost 145˙941 €
 EC max contribution 145˙941 € (100%)
 Programme 1. H2020-EU.4. (SPREADING EXCELLENCE AND WIDENING PARTICIPATION)
 Code Call H2020-WF-01-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-17   to  2021-06-16

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF CYPRUS CY (NICOSIA) coordinator 145˙941.00

Map

 Project objective

Inefficient delivery of cellular and molecular medicines to solid tumors can reduce dramatically the efficacy of treatment and affect negatively patient’s survival. This explains in large part why standard chemo- and immune-therapies often fail to treat specific cancer types, even though these therapies are potent enough to eradicate cancer cells. Abnormalities in the structure of the tumor vasculature hinder tumor perfusion and as a result the systemic delivery of the medicines. In many tumor types, blood vessels are hyper-permeable, leaving large interendothelial openings, which causes fluid loss from the vascular to the interstitial tumor space. Vessel hyper-permeability can reduce tumor blood flow, rendering tumors hypo-perfused and hypoxic. Impaired blood supply and hypoxia help cancer cells evade the immune system and increase their invasive and metastatic potential. Normalization of the tumor vasculature is a clinical strategy to repair vascular abnormalities in order to improve perfusion, oxygenation and delivery of medicines. Immunotherapy is gaining interest as an effective therapeutic approach against cancer, but only a subset of patients receiving immunotherapy exhibit sustained tumor shrinkage. Here, we hypothesize that vascular normalization can improve immunotherapy. The objective of the proposed research is the optimal design of the combined immunotherapy and vascular normalization therapeutic approach. To this end, a numerical and experimental study is proposed to model and experimentally validate the vascular normalization procedure, focusing on its combined effects with immunotherapeutic drugs. The proposed research/training will complement the Applicant’s skills in high-performance computing, advanced optimization algorithms and artificial neural networks with the Host’s expertise in tumor microenvironment and cancer drug delivery to enhance his professional maturity and promote international collaborations.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMMUNOMECH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IMMUNOMECH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.4.)

LC-FMRI (2019)

Deciphering the effects of locus coeruleus activity on whole-brain dynamics and neurovascular coupling

Read More  

P-appetite (2019)

Dissecting how the Drosophila brain regulates behavioral sequences of feeding to ensure protein homeostasis

Read More  

ProBioMem (2020)

Molecular Probes for Biofouling monitoring in Membrane Processes

Read More