Opendata, web and dolomites

SleepCirc SIGNED

Claustrum, Brainstem and Sleep: Mechanisms and Function

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SleepCirc" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙311˙197 €
 EC max contribution 2˙311˙197 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2024-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 2˙311˙197.00

Map

 Project objective

We will address fundamental questions about sleep mechanisms, function and evolution, and about the role of the claustrum, a forebrain area with hypothetical roles in attention and consciousness. These results are interesting in part because the claustrum has an ill-defined evolutionary origin and because its potential involvement in sleep has, to our knowledge, not been reported previously.

This proposal exploits three new and previously unrelated results from the reptilian brain. (i) We discovered recently that, in the lizard Pogona vitticeps, slow-wave and REM sleep alternate in a clock-like fashion, suggesting the existence of regular sleep pattern generators in the brainstem. (ii) More recently, a single-cell RNA sequencing study of the reptilian brain by our laboratory, hinted that a small pallial area may be homologous to the mammalian claustrum. This homology acquired functional importance in a third, independent finding, based on electrophysiological recordings: (iii) sharp-wave ripples, a hallmark of Pogona slow-wave sleep, can be generated autonomously from an area that corresponds precisely to the transcriptomically-identified claustrum. This convergence provides a potential clue about claustrum function and evolution, especially because, in mammals at least, the claustrum is densely interconnected with the rest of the brain, especially cortex.

Our neuroethological approach will exploit the unique advantages of Pogona sleep, combining scRNA-seq, tract-tracing, optogenetic, behavioral and electrophysiological approaches.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SLEEPCIRC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SLEEPCIRC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

TransReg (2019)

Transgenerational epigenetic inheritance of cardiac regenerative capacity in the zebrafish

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More