Opendata, web and dolomites

MsgRNA SIGNED

Modification of single guide (sg) RNA in CRISPR-Cas9 gene editing Tool

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MsgRNA" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-11-01   to  2021-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 212˙933.00

Map

 Project objective

CRISPR/Cas9 has been extensively studied for genome editing, but its therapeutic application has been hampered by off-target effects. Site-specific modification of single guide (sg) RNA in CRISPR system is a potential means to expand the utility of CRISPR-Cas genome editing. To address this, and reduce of synthetic burden of sgRNA we propose a ‘click’ ligation method to synthesize sgRNA where two chemically modified oligonucleotides are joined together using CuAAC chemistry. The resultant artificial linkage is biomimetic, so it should not affect Cas9 activity. This method offers significantly higher DNA-targeting specificity (i.e. less off-target effects) and most importantly provides a cost-effective means to access thousands of synthetic sgRNAs. Imaging in CRISPR-Cas9 system using fluorescence in situ hybridisation (FISH) probes have enabled significant advancements in understanding genomic structure and transcriptional control. We will explore novel approaches to image CRISPR-Cas9 system using fluorophore-quencher pairs. The activation of fluorescence can be performed upon nuclear localisation using RNase H, and upon sgRNA binding to the target DNA. These methods will provide highly fluorescent sgRNAs for live-cell imaging, potentially much brighter compared to other methods. To control CRISPR off-target effects we will also design a light induced DNA damage method where cyanovinylcarbazole nucleoside or psolaren will be incorporated in the DNA-targeting RNA. Therefore, modification of sgRNA for CRISPR system can be used to address the biological limitations of CRISPR and expand its functionality. This will open up many avenues for future development and lead to more application-focused studies on therapeutic gene editing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MSGRNA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MSGRNA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More